BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33238049)

  • 1. Evaluation of major historical ICR cell designs using electric field simulations.
    Nikolaev E; Lioznov A
    Mass Spectrom Rev; 2022 Mar; 41(2):262-283. PubMed ID: 33238049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier transform ion cyclotron resonance mass spectrometry at the true cyclotron frequency.
    Nagornov KO; Tsybin OY; Nicol E; Kozhinov AN; Tsybin YO
    Mass Spectrom Rev; 2022 Mar; 41(2):314-337. PubMed ID: 33462876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandem mass spectrometry in quadrupole ion trap and ion cyclotron resonance mass spectrometers.
    Payne AH; Glish GL
    Methods Enzymol; 2005; 402():109-48. PubMed ID: 16401508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FT-ICR mass spectrometry: Superconducting magnet, external ion source, ion-molecule reactions, and ion-ion traps.
    Wanczek KP; Kanawati B
    Mass Spectrom Rev; 2022 Mar; 41(2):338-351. PubMed ID: 33521990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier transform ion cyclotron resonance mass spectrometry: a primer.
    Marshall AG; Hendrickson CL; Jackson GS
    Mass Spectrom Rev; 1998; 17(1):1-35. PubMed ID: 9768511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of a dual linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer for proteomics research.
    Weisbrod CR; Hoopmann MR; Senko MW; Bruce JE
    J Proteomics; 2013 Aug; 88():109-19. PubMed ID: 23590889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of increased ion cyclotron resonance signal duration through electric field perturbations.
    Kaiser NK; Bruce JE
    Anal Chem; 2005 Sep; 77(18):5973-81. PubMed ID: 16159130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamically harmonized FT-ICR cell with specially shaped electrodes for compensation of inhomogeneity of the magnetic field. Computer simulations of the electric field and ion motion dynamics.
    Kostyukevich YI; Vladimirov GN; Nikolaev EN
    J Am Soc Mass Spectrom; 2012 Dec; 23(12):2198-207. PubMed ID: 22993044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization of an Open Dynamically Harmonized Cell for Ultrahigh FT ICR Resolution.
    Lioznov A; Nikolaev E
    J Am Soc Mass Spectrom; 2022 Nov; 33(11):2032-2037. PubMed ID: 36251283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution Fourier transform ion cyclotron resonance mass spectrometry with increased throughput for biomolecular analysis.
    Nagornov KO; Gorshkov MV; Kozhinov AN; Tsybin YO
    Anal Chem; 2014 Sep; 86(18):9020-8. PubMed ID: 25140615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards analytically useful two-dimensional Fourier transform ion cyclotron resonance mass spectrometry.
    van Agthoven MA; Delsuc MA; Bodenhausen G; Rolando C
    Anal Bioanal Chem; 2013 Jan; 405(1):51-61. PubMed ID: 23076397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data processing in Fourier transform ion cyclotron resonance mass spectrometry.
    Qi Y; O'Connor PB
    Mass Spectrom Rev; 2014; 33(5):333-52. PubMed ID: 24403247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MS/MS with high detection efficiency and mass resolving power for product ions in Fourier transform ion cyclotron resonance mass spectrometry.
    Guan S; Marshall AG; Wahl MC
    Anal Chem; 1994 Apr; 66(8):1363-7. PubMed ID: 7516123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel high-performance fourier transform ion cyclotron resonance cell for improved biopolymer characterization.
    Bruce JE; Anderson GA; Lin CY; Gorshkov M; Rockwood AL; Smith RD
    J Mass Spectrom; 2000 Jan; 35(1):85-94. PubMed ID: 10633238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrically compensated trap designed to eighth order for FT-ICR mass spectrometry.
    Brustkern AM; Rempel DL; Gross ML
    J Am Soc Mass Spectrom; 2008 Sep; 19(9):1281-5. PubMed ID: 18599306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-resolution scanning microprobe matrix-assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer.
    Koestler M; Kirsch D; Hester A; Leisner A; Guenther S; Spengler B
    Rapid Commun Mass Spectrom; 2008 Oct; 22(20):3275-85. PubMed ID: 18819119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of axial kinetic energy induced perturbations on observed cyclotron frequency.
    Kaiser NK; Weisbrod CR; Webb BN; Bruce JE
    J Am Soc Mass Spectrom; 2008 Apr; 19(4):467-78. PubMed ID: 18262433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.
    van Agthoven MA; Barrow MP; Chiron L; Coutouly MA; Kilgour D; Wootton CA; Wei J; Soulby A; Delsuc MA; Rolando C; O'Connor PB
    J Am Soc Mass Spectrom; 2015 Dec; 26(12):2105-14. PubMed ID: 26184984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Hendrickson CL; Emmett MR
    Annu Rev Phys Chem; 1999; 50():517-36. PubMed ID: 10575730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel Fourier transform ion cyclotron resonance mass spectrometer with improved ion trapping and detection capabilities.
    Kaiser NK; Skulason GE; Weisbrod CR; Bruce JE
    J Am Soc Mass Spectrom; 2009 May; 20(5):755-62. PubMed ID: 19200753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.