These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 33238306)
1. Quantification of the effect of site-specific histone acetylation on chromatin transcription rate. Wakamori M; Okabe K; Ura K; Funatsu T; Takinoue M; Umehara T Nucleic Acids Res; 2020 Dec; 48(22):12648-12659. PubMed ID: 33238306 [TBL] [Abstract][Full Text] [Related]
3. Both the 5S rRNA gene and the AT-rich flanks of xenopus laevis oocyte-type 5S rDNA repeat are required for histone H1-dependent repression of transcription of pol III-type genes in in vitro reconstituted chromatin. Tomaszewski R; Mogielnicka E; Jerzmanowski A Nucleic Acids Res; 1998 Dec; 26(24):5596-601. PubMed ID: 9837988 [TBL] [Abstract][Full Text] [Related]
4. Transcriptionally active Xenopus laevis somatic 5 S ribosomal RNA genes are packaged with hyperacetylated histone H4, whereas transcriptionally silent oocyte genes are not. Howe L; Ranalli TA; Allis CD; Ausió J J Biol Chem; 1998 Aug; 273(33):20693-6. PubMed ID: 9694810 [TBL] [Abstract][Full Text] [Related]
5. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. Ura K; Kurumizaka H; Dimitrov S; Almouzni G; Wolffe AP EMBO J; 1997 Apr; 16(8):2096-107. PubMed ID: 9155035 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of 5S RNA transcription in vitro by nucleosome cores with low or high levels of histone acetylation. Roberge M; O'Neill TE; Bradbury EM FEBS Lett; 1991 Aug; 288(1-2):215-8. PubMed ID: 1879554 [TBL] [Abstract][Full Text] [Related]
7. The AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus laevis act as a strong local signal for histone H1-mediated chromatin reorganization in vitro. Tomaszewski R; Jerzmanowski A Nucleic Acids Res; 1997 Feb; 25(3):458-66. PubMed ID: 9016582 [TBL] [Abstract][Full Text] [Related]
8. Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation. Wakamori M; Fujii Y; Suka N; Shirouzu M; Sakamoto K; Umehara T; Yokoyama S Sci Rep; 2015 Nov; 5():17204. PubMed ID: 26607036 [TBL] [Abstract][Full Text] [Related]
9. Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes. Sera T; Wolffe AP Mol Cell Biol; 1998 Jul; 18(7):3668-80. PubMed ID: 9632749 [TBL] [Abstract][Full Text] [Related]
10. Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies. Hayashi-Takanaka Y; Maehara K; Harada A; Umehara T; Yokoyama S; Obuse C; Ohkawa Y; Nozaki N; Kimura H Chromosome Res; 2015 Dec; 23(4):753-66. PubMed ID: 26343042 [TBL] [Abstract][Full Text] [Related]
12. Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. Liu Y; Lu C; Yang Y; Fan Y; Yang R; Liu CF; Korolev N; Nordenskiöld L J Mol Biol; 2011 Dec; 414(5):749-64. PubMed ID: 22051513 [TBL] [Abstract][Full Text] [Related]
13. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Bouvet P; Dimitrov S; Wolffe AP Genes Dev; 1994 May; 8(10):1147-59. PubMed ID: 7926720 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains. Iwasaki W; Tachiwana H; Kawaguchi K; Shibata T; Kagawa W; Kurumizaka H Biochemistry; 2011 Sep; 50(36):7822-32. PubMed ID: 21812398 [TBL] [Abstract][Full Text] [Related]
15. Histone modification: cause or cog? Henikoff S; Shilatifard A Trends Genet; 2011 Oct; 27(10):389-96. PubMed ID: 21764166 [TBL] [Abstract][Full Text] [Related]
17. Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin. An W; Palhan VB; Karymov MA; Leuba SH; Roeder RG Mol Cell; 2002 Apr; 9(4):811-21. PubMed ID: 11983172 [TBL] [Abstract][Full Text] [Related]
18. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Allahverdi A; Yang R; Korolev N; Fan Y; Davey CA; Liu CF; Nordenskiöld L Nucleic Acids Res; 2011 Mar; 39(5):1680-91. PubMed ID: 21047799 [TBL] [Abstract][Full Text] [Related]
19. Regulated acetylation and deacetylation of H4 K16 is essential for efficient NER in Saccharomyces cerevisiae. Ray A; Khan P; Nag Chaudhuri R DNA Repair (Amst); 2018 Dec; 72():39-55. PubMed ID: 30274769 [TBL] [Abstract][Full Text] [Related]
20. Dominant and specific repression of Xenopus oocyte 5S RNA genes and satellite I DNA by histone H1. Wolffe AP EMBO J; 1989 Feb; 8(2):527-37. PubMed ID: 2721490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]