BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33238606)

  • 1. Profiling of Low-Molecular-Weight Carbonyls and Protein Modifications in Flavored Milk.
    Wölk M; Schröter T; Hoffmann R; Milkovska-Stamenova S
    Antioxidants (Basel); 2020 Nov; 9(11):. PubMed ID: 33238606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and quantification of bovine protein lactosylation sites in different milk products.
    Milkovska-Stamenova S; Hoffmann R
    J Proteomics; 2016 Feb; 134():112-126. PubMed ID: 26210590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic characterization of intermediate and advanced glycation end-products in commercial milk samples.
    Renzone G; Arena S; Scaloni A
    J Proteomics; 2015 Mar; 117():12-23. PubMed ID: 25638024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of seasonal variation and processing on protein glycation and oxidation in regular and hay milk.
    Wölk M; Milkovska-Stamenova S; Schröter T; Hoffmann R
    Food Chem; 2021 Feb; 337():127690. PubMed ID: 32795853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products.
    Milkovska-Stamenova S; Hoffmann R
    Food Chem; 2017 Apr; 221():489-495. PubMed ID: 27979232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein carbonylation sites in bovine raw milk and processed milk products.
    Milkovska-Stamenova S; Mnatsakanyan R; Hoffmann R
    Food Chem; 2017 Aug; 229():417-424. PubMed ID: 28372194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic tracking of hydrothermal Maillard and redox modification in lactoferrin and β-lactoglobulin: Location of lactosylation, carboxymethylation, and oxidation sites.
    Dyer JM; Clerens S; Grosvenor A; Thomas A; Callaghan C; Deb-Choudhury S; Haines S
    J Dairy Sci; 2016 May; 99(5):3295-3304. PubMed ID: 26923048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Products of Early and Advanced Glycation in the Soy Milk Proteome.
    Milkovska-Stamenova S; Krieg L; Hoffmann R
    Mol Nutr Food Res; 2019 Jan; 63(2):e1800725. PubMed ID: 30430721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Untargeted Proteomics-Based Profiling for the Identification of Novel Processing-Induced Protein Modifications in Milk.
    Meltretter J; Wüst J; Dittrich D; Lach J; Ludwig J; Eichler J; Pischetsrieder M
    J Proteome Res; 2020 Feb; 19(2):805-818. PubMed ID: 31902209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of advanced glycation end products in the bovine milk proteome.
    Milkovska-Stamenova S; Hoffmann R
    Amino Acids; 2019 Jun; 51(6):891-901. PubMed ID: 30963298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dairy products and the Maillard reaction: A promising future for extensive food characterization by integrated proteomics studies.
    Arena S; Renzone G; D'Ambrosio C; Salzano AM; Scaloni A
    Food Chem; 2017 Mar; 219():477-489. PubMed ID: 27765254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products.
    Hegele J; Buetler T; Delatour T
    Anal Chim Acta; 2008 Jun; 617(1-2):85-96. PubMed ID: 18486644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Profiling of the Native and Modified Peptidomes of Raw Bovine Milk and Processed Milk Products.
    Wölk M; Milkovska-Stamenova S; Hoffmann R
    Foods; 2020 Dec; 9(12):. PubMed ID: 33321979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycation products in infant formulas: chemical, analytical and physiological aspects.
    Pischetsrieder M; Henle T
    Amino Acids; 2012 Apr; 42(4):1111-8. PubMed ID: 20953645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Faox enzymes inhibited Maillard reaction development during storage both in protein glucose model system and low lactose UHT milk.
    Troise AD; Dathan NA; Fiore A; Roviello G; Di Fiore A; Caira S; Cuollo M; De Simone G; Fogliano V; Monti SM
    Amino Acids; 2014 Feb; 46(2):279-88. PubMed ID: 23604465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in Milk Protein Interactions and Associated Molecular Modification Resulting from Thermal Treatments and Storage.
    Liu H; Grosvenor AJ; Li X; Wang XL; Ma Y; Clerens S; Dyer JM; Day L
    J Food Sci; 2019 Jul; 84(7):1737-1745. PubMed ID: 31225661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of mass spectrometry for the detection of glycation and oxidation products in milk proteins.
    Meltretter J; Pischetsrieder M
    Ann N Y Acad Sci; 2008 Apr; 1126():134-40. PubMed ID: 18448807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions.
    Bollineni RC; Hoffmann R; Fedorova M
    Free Radic Biol Med; 2014 Mar; 68():186-95. PubMed ID: 24321318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of heat treatment of dairy products by MALDI-TOF-MS.
    Meltretter J; Birlouez-Aragon I; Becker CM; Pischetsrieder M
    Mol Nutr Food Res; 2009 Dec; 53(12):1487-95. PubMed ID: 19760680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of heat treatment on the lactosylation of milk proteins.
    Lu J; Zhu T; Dai Y; Xing L; Jinqi L; Zhou S; Kong C
    J Dairy Sci; 2023 Dec; 106(12):8321-8330. PubMed ID: 37641337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.