BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33238790)

  • 1.
    Hasyima Omar M; González Barrio R; Pereira-Caro G; Almutairi TM; Crozier A
    Int J Food Sci Nutr; 2021 Jun; 72(4):511-517. PubMed ID: 33238790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolism of coffee chlorogenic acids by human colonic microbiota.
    Ludwig IA; Paz de Peña M; Concepción C; Alan C
    Biofactors; 2013; 39(6):623-32. PubMed ID: 23904092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro.
    Gonthier MP; Remesy C; Scalbert A; Cheynier V; Souquet JM; Poutanen K; Aura AM
    Biomed Pharmacother; 2006 Nov; 60(9):536-40. PubMed ID: 16978827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Validation of an in vitro Experimental GastroIntestinal Dialysis Model with Colon Phase to Study the Availability and Colonic Metabolisation of Polyphenolic Compounds.
    Breynaert A; Bosscher D; Kahnt A; Claeys M; Cos P; Pieters L; Hermans N
    Planta Med; 2015 Aug; 81(12-13):1075-83. PubMed ID: 26166134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic production of caffeic acid by koji from plant resources containing caffeoylquinic acid derivatives.
    Yoshimoto M; Kurata-Azuma R; Fujii M; Hou DX; Ikeda K; Yoshidome T; Osako M
    Biosci Biotechnol Biochem; 2005 Sep; 69(9):1777-81. PubMed ID: 16195601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caffeic acid derivatives from Eupatorium perfoliatum L.
    Maas M; Petereit F; Hensel A
    Molecules; 2008 Dec; 14(1):36-45. PubMed ID: 19104484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro enzymic hydrolysis of chlorogenic acids in coffee.
    da Encarnação JA; Farrell TL; Ryder A; Kraut NU; Williamson G
    Mol Nutr Food Res; 2015 Feb; 59(2):231-9. PubMed ID: 25380542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccessibility of Tudela artichoke (Cynara scolymus cv. Blanca de Tudela) (poly)phenols: the effects of heat treatment, simulated gastrointestinal digestion and human colonic microbiota.
    Domínguez-Fernández M; Ludwig IA; De Peña MP; Cid C
    Food Funct; 2021 Mar; 12(5):1996-2011. PubMed ID: 33537693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Gut Metabolism of [U-
    Naranjo Pinta M; Montoliu I; Aura AM; Seppänen-Laakso T; Barron D; Moco S
    Mol Nutr Food Res; 2018 Nov; 62(22):e1800396. PubMed ID: 30113130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal transformation of trans-5-O-caffeoylquinic acid (trans-5-CQA) in alcoholic solutions.
    Dawidowicz AL; Typek R
    Food Chem; 2015 Jan; 167():52-60. PubMed ID: 25148959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro colonic catabolism of orange juice (poly)phenols.
    Pereira-Caro G; Borges G; Ky I; Ribas A; Calani L; Del Rio D; Clifford MN; Roberts SA; Crozier A
    Mol Nutr Food Res; 2015 Mar; 59(3):465-75. PubMed ID: 25545994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling the chlorogenic acids and other caffeic acid derivatives of herbal chrysanthemum by LC-MSn.
    Clifford MN; Wu W; Kirkpatrick J; Kuhnert N
    J Agric Food Chem; 2007 Feb; 55(3):929-36. PubMed ID: 17263495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolysis of Dicaffeoylquinic Acids from Ilex kudingcha Happens in the Colon by Intestinal Microbiota.
    Xie M; Chen G; Hu B; Zhou L; Ou S; Zeng X; Sun Y
    J Agric Food Chem; 2016 Dec; 64(51):9624-9630. PubMed ID: 27977191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenolic acids in Fructus Xanthii and determination of contents of total phenolic acids in different species and populations of Xanthium in China.
    Han T; Li HL; Hu Y; Zhang QY; Huang BK; Zheng HC; Rahman K; Qin LP
    Zhong Xi Yi Jie He Xue Bao; 2006 Mar; 4(2):194-8. PubMed ID: 16529699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Simultaneous determination of 6 phenolic acids in coffee beans by reversed-phase high performance liquid chromatography].
    Long W; Zhang S; Yuan L; Li Y; Liu Z
    Se Pu; 2011 May; 29(5):439-42. PubMed ID: 21847980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal caco-2 cell monolayers.
    Konishi Y; Kobayashi S
    J Agric Food Chem; 2004 May; 52(9):2518-26. PubMed ID: 15113150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caffeic acid, chlorogenic acid, and dihydrocaffeic acid metabolism: glutathione conjugate formation.
    Moridani MY; Scobie H; Jamshidzadeh A; Salehi P; O'Brien PJ
    Drug Metab Dispos; 2001 Nov; 29(11):1432-9. PubMed ID: 11602518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Constituents from Xanthium mongolicum.
    Fu XM; Liu DH; Sun YC; Liu J; Pei JG; Wu ZG
    Zhong Yao Cai; 2016 Jun; 39(6):1308-10. PubMed ID: 30156804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity.
    Clifford MN; Jaganath IB; Ludwig IA; Crozier A
    Nat Prod Rep; 2017 Dec; 34(12):1391-1421. PubMed ID: 29160894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.
    Wang LN; Wang W; Hattori M; Daneshtalab M; Ma CM
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27338318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.