BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33238790)

  • 21. Chlorogenic acid versus amaranth's caffeoylisocitric acid - Gut microbial degradation of caffeic acid derivatives.
    Vollmer M; Schröter D; Esders S; Neugart S; Farquharson FM; Duncan SH; Schreiner M; Louis P; Maul R; Rohn S
    Food Res Int; 2017 Oct; 100(Pt 3):375-384. PubMed ID: 28964360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of ester and amine derivatives of 5-O-caffeoylquinic acid in the process of its simulated extraction.
    Dawidowicz AL; Typek R
    J Agric Food Chem; 2012 Dec; 60(50):12289-95. PubMed ID: 23176346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats.
    Lafay S; Morand C; Manach C; Besson C; Scalbert A
    Br J Nutr; 2006 Jul; 96(1):39-46. PubMed ID: 16869989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro transformation of chlorogenic acid by human gut microbiota.
    Tomas-Barberan F; García-Villalba R; Quartieri A; Raimondi S; Amaretti A; Leonardi A; Rossi M
    Mol Nutr Food Res; 2014 May; 58(5):1122-31. PubMed ID: 24550206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intestinal transit and systemic metabolism of apple polyphenols.
    Kahle K; Kempf M; Schreier P; Scheppach W; Schrenk D; Kautenburger T; Hecker D; Huemmer W; Ackermann M; Richling E
    Eur J Nutr; 2011 Oct; 50(7):507-22. PubMed ID: 21184087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absorption of phenolic acids in humans after coffee consumption.
    Nardini M; Cirillo E; Natella F; Scaccini C
    J Agric Food Chem; 2002 Sep; 50(20):5735-41. PubMed ID: 12236707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins.
    Gugliucci A; Bastos DH; Schulze J; Souza MF
    Fitoterapia; 2009 Sep; 80(6):339-44. PubMed ID: 19409454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transformation of 5-O-caffeoylquinic acid in blueberries during high-temperature processing.
    Dawidowicz AL; Typek R
    J Agric Food Chem; 2014 Nov; 62(45):10889-95. PubMed ID: 25336323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans.
    Wittemer SM; Ploch M; Windeck T; Müller SC; Drewelow B; Derendorf H; Veit M
    Phytomedicine; 2005 Jan; 12(1-2):28-38. PubMed ID: 15693705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New 5-O-caffeoylquinic acid derivatives in fruit of the wild eggplant relative Solanum viarum.
    Ma C; Whitaker BD; Kennelly EJ
    J Agric Food Chem; 2010 Oct; 58(20):11036-42. PubMed ID: 20886887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural products from Scorzonera aristata (Asteraceae).
    Jehle M; Bano J; Ellmerer EP; Zidorn C
    Nat Prod Commun; 2010 May; 5(5):725-7. PubMed ID: 20521536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth.
    Mills CE; Tzounis X; Oruna-Concha MJ; Mottram DS; Gibson GR; Spencer JP
    Br J Nutr; 2015 Apr; 113(8):1220-7. PubMed ID: 25809126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Caffeic acid derivatives in the roots of yacon (Smallanthus sonchifolius).
    Takenaka M; Yan X; Ono H; Yoshida M; Nagata T; Nakanishi T
    J Agric Food Chem; 2003 Jan; 51(3):793-6. PubMed ID: 12537459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products.
    Rechner AR; Smith MA; Kuhnle G; Gibson GR; Debnam ES; Srai SK; Moore KP; Rice-Evans CA
    Free Radic Biol Med; 2004 Jan; 36(2):212-25. PubMed ID: 14744633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of isomeric dicaffeoylquinic acids from Eleutherococcus senticosus using HPLC-ESI/TOF/MS and 1H-NMR methods.
    Tolonen A; Joutsamo T; Mattlla S; Kämäräinen T; Jalonen J
    Phytochem Anal; 2002; 13(6):316-28. PubMed ID: 12494749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic Characterization of Tyrosinase-catalyzed Oxidation of Four Polyphenols.
    Liu WY; Zou CM; Hu JH; Xu ZJ; Si LQ; Liu JJ; Huang JG
    Curr Med Sci; 2020 Apr; 40(2):239-248. PubMed ID: 32337685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of boiling on chlorogenic acid and the liver protective effects of its main products against CCl₄-induced toxicity in vitro.
    Kan S; Cheung MW; Zhou Y; Ho WS
    J Food Sci; 2014 Feb; 79(2):C147-54. PubMed ID: 24456346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Molecular docking of chlorogenic acid, 3,4-di-O-caffeoylquinic acid and 3,5-di-O-caffeoylquinic acid with human serum albumin].
    Zhou J; Ma HY; Fan XS; Xiao W; Wang TJ
    Zhong Xi Yi Jie He Xue Bao; 2012 Oct; 10(10):1149-54. PubMed ID: 23073199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The composition and metabolism of faecal microbiota is specifically modulated by different dietary polysaccharides and mucin: an isothermal microcalorimetry study.
    Adamberg K; Kolk K; Jaagura M; Vilu R; Adamberg S
    Benef Microbes; 2018 Jan; 9(1):21-34. PubMed ID: 29022389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression.
    Kang NJ; Lee KW; Shin BJ; Jung SK; Hwang MK; Bode AM; Heo YS; Lee HJ; Dong Z
    Carcinogenesis; 2009 Feb; 30(2):321-30. PubMed ID: 19073879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.