These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33238809)
1. Elevated CO-free hydrogen productivity through ethanol steam reforming using cubic Co-Nanoparticles based MgO catalyst. El-Salamony RA; Morshedy AS; El Naggar AMA Environ Technol; 2022 May; 43(12):1860-1869. PubMed ID: 33238809 [TBL] [Abstract][Full Text] [Related]
2. A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol. Wu C; Williams PT Environ Sci Technol; 2010 Aug; 44(15):5993-8. PubMed ID: 20597551 [TBL] [Abstract][Full Text] [Related]
3. Global Vision of the Reaction and Deactivation Routes in the Ethanol Steam Reforming on a Catalyst Derived from a Ni-Al Spinel. Iglesias-Vázquez S; Valecillos J; Remiro A; Valle B; Bilbao J; Gayubo AG Energy Fuels; 2024 Apr; 38(8):7033-7048. PubMed ID: 38654764 [TBL] [Abstract][Full Text] [Related]
4. Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route. Homsi D; Rached JA; Aouad S; Gennequin C; Dahdah E; Estephane J; Tidahy HL; Aboukaïs A; Abi-Aad E Environ Sci Pollut Res Int; 2017 Apr; 24(11):9907-9913. PubMed ID: 27552997 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen production from the steam reforming of bio-butanol over novel supported Co-based bimetallic catalysts. Cai W; de la Piscina PR; Homs N Bioresour Technol; 2012 Mar; 107():482-6. PubMed ID: 22244952 [TBL] [Abstract][Full Text] [Related]
6. Effect of process conditions on the steam reforming of ethanol with a nano-Ni/SiO2 catalyst. Wu C; Williams PT Environ Technol; 2012; 33(4-6):631-8. PubMed ID: 22629637 [TBL] [Abstract][Full Text] [Related]
7. Sustainable Production of Hydrogen by Steam Reforming of Ethanol Using Cobalt Supported on Nanoporous Zeolitic Material. da Costa-Serra JF; Navarro MT; Rey F; Chica A Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32998234 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen-rich gas production via steam gasification of food waste over basic oxides (MgO/CaO/SrO) promoted-Ni/Al Moogi S; Jang SH; Rhee GH; Ko CH; Choi YJ; Lee SH; Show PL; Andrew Lin KY; Park YK Chemosphere; 2022 Jan; 287(Pt 2):132224. PubMed ID: 34826918 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3. Sanchez-Sanchez MC; Navarro Yerga RM; Kondarides DI; Verykios XE; Fierro JL J Phys Chem A; 2010 Mar; 114(11):3873-82. PubMed ID: 19824680 [TBL] [Abstract][Full Text] [Related]
10. Steam reforming of polystyrene at a low temperature for high H Zhou H; Saad JM; Li Q; Xu Y Waste Manag; 2020 Mar; 104():42-50. PubMed ID: 31962216 [TBL] [Abstract][Full Text] [Related]
11. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst. Yoshida H; Yamaoka R; Arai M Int J Mol Sci; 2014 Dec; 16(1):350-62. PubMed ID: 25547495 [TBL] [Abstract][Full Text] [Related]
12. Efficient hydrogen production from ethanol and glycerol by vapour-phase reforming processes with new cobalt-based catalysts. Pereira EB; de la Piscina PR; Homs N Bioresour Technol; 2011 Feb; 102(3):3419-23. PubMed ID: 21044836 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises. He L; Chen D ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630 [TBL] [Abstract][Full Text] [Related]
14. Microcalorimetric and infrared studies of ethanol and acetaldehyde adsorption to investigate the ethanol steam reforming on supported cobalt catalysts. Guil JM; Homs N; Llorca J; Ramírez de la Piscina P J Phys Chem B; 2005 Jun; 109(21):10813-9. PubMed ID: 16852315 [TBL] [Abstract][Full Text] [Related]
15. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium. Go GS; Go YJ; Lee HJ; Moon DJ; Park NC; Kim YC J Nanosci Nanotechnol; 2016 Feb; 16(2):1855-8. PubMed ID: 27433687 [TBL] [Abstract][Full Text] [Related]
16. Distinct coking depth in steam reforming of oxygen-containing organics and hydrocarbons. Bkangmo Kontchouo FM; Zhang L; Zhang S; Hu G; Hu X J Colloid Interface Sci; 2023 Jun; 639():385-400. PubMed ID: 36812854 [TBL] [Abstract][Full Text] [Related]
17. Appraisal of agroforestry biomass wastes for hydrogen production by an integrated process of fast pyrolysis and in line steam reforming. Arregi A; Santamaria L; Lopez G; Olazar M; Bilbao J; Artetxe M; Amutio M J Environ Manage; 2023 Dec; 347():119071. PubMed ID: 37801944 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen Production by Ethanol Reforming on Supported Ni-Cu Catalysts. Liu Q; Zhou H; Jia Z ACS Omega; 2022 Feb; 7(5):4577-4584. PubMed ID: 35155948 [TBL] [Abstract][Full Text] [Related]
19. An Experimental Performance Study of a Catalytic Membrane Reactor for Ethanol Steam Reforming over a Metal Honeycomb Catalyst. Eremeev N; Krasnov A; Bespalko Y; Bobrova L; Smorygo O; Sadykov V Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677556 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen Production by Three-Stage (i) Pyrolysis, (ii) Catalytic Steam Reforming, and (iii) Water Gas Shift Processing of Waste Plastic. Alshareef R; Nahil MA; Williams PT Energy Fuels; 2023 Mar; 37(5):3894-3907. PubMed ID: 36897817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]