BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 33239022)

  • 1. Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration.
    Little K; Llorián-Salvador M; Tang M; Du X; Marry S; Chen M; Xu H
    J Neuroinflammation; 2020 Nov; 17(1):355. PubMed ID: 33239022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells.
    Llorián-Salvador M; Byrne EM; Szczepan M; Little K; Chen M; Xu H
    J Neuroinflammation; 2022 Jul; 19(1):182. PubMed ID: 35831910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophage elastase (MMP12) critically contributes to the development of subretinal fibrosis.
    Yi C; Liu J; Deng W; Luo C; Qi J; Chen M; Xu H
    J Neuroinflammation; 2022 Apr; 19(1):78. PubMed ID: 35382832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: a key driver of subretinal fibrosis in neovascular age-related macular degeneration.
    Liu D; Du J; Xie H; Tian H; Lu L; Zhang C; Xu GT; Zhang J
    J Neuroinflammation; 2024 Mar; 21(1):75. PubMed ID: 38532410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Two-Stage Laser-Induced Mouse Model of Subretinal Fibrosis Secondary to Choroidal Neovascularization.
    Little K; Llorián-Salvador M; Tang M; Du X; O'Shaughnessy Ó; McIlwaine G; Chen M; Xu H
    Transl Vis Sci Technol; 2020 Mar; 9(4):3. PubMed ID: 32818091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of anaphylatoxin C3a, C5a on the tubular epithelial-myofibroblast transdifferentiation in vitro.
    Liu F; Gou R; Huang J; Fu P; Chen F; Fan WX; Huang YQ; Zang L; Wu M; Qiu HY; Wei DP
    Chin Med J (Engl); 2011 Dec; 124(23):4039-45. PubMed ID: 22340339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis.
    Wang S; Meng XM; Ng YY; Ma FY; Zhou S; Zhang Y; Yang C; Huang XR; Xiao J; Wang YY; Ka SM; Tang YJ; Chung AC; To KF; Nikolic-Paterson DJ; Lan HY
    Oncotarget; 2016 Feb; 7(8):8809-22. PubMed ID: 26684242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis.
    Meng XM; Wang S; Huang XR; Yang C; Xiao J; Zhang Y; To KF; Nikolic-Paterson DJ; Lan HY
    Cell Death Dis; 2016 Dec; 7(12):e2495. PubMed ID: 27906172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luteolin inhibits subretinal fibrosis and epithelial-mesenchymal transition in laser-induced mouse model via suppression of Smad2/3 and YAP signaling.
    Zhang C; Zhang Y; Hu X; Zhao Z; Chen Z; Wang X; Zhang Z; Jin H; Zhang J
    Phytomedicine; 2023 Jul; 116():154865. PubMed ID: 37201365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease.
    Li L; Chen L; Zang J; Tang X; Liu Y; Zhang J; Bai L; Yin Q; Lu Y; Cheng J; Fu P; Liu F
    Metabolism; 2015 May; 64(5):597-610. PubMed ID: 25682062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Old age promotes retinal fibrosis in choroidal neovascularization through circulating fibrocytes and profibrotic macrophages.
    Yi C; Liu J; Deng W; Luo C; Qi J; Chen M; Xu H
    J Neuroinflammation; 2023 Feb; 20(1):45. PubMed ID: 36823538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring.
    Tang PM; Zhou S; Li CJ; Liao J; Xiao J; Wang QM; Lian GY; Li J; Huang XR; To KF; Ng CF; Chong CC; Ma RC; Lee TL; Lan HY
    Kidney Int; 2018 Jan; 93(1):173-187. PubMed ID: 29042082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The COX-2-Selective Antagonist (NS-398) Inhibits Choroidal Neovascularization and Subretinal Fibrosis.
    Zhang R; Liu Z; Zhang H; Zhang Y; Lin D
    PLoS One; 2016; 11(1):e0146808. PubMed ID: 26760305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition.
    Tang PM; Zhang YY; Xiao J; Tang PC; Chung JY; Li J; Xue VW; Huang XR; Chong CC; Ng CF; Lee TL; To KF; Nikolic-Paterson DJ; Lan HY
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20741-20752. PubMed ID: 32788346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrophage-Myofibroblast Transition as a Potential Origin for Skeletal Muscle Fibrosis After Injury via Complement System Activation.
    Qi B; Li Y; Peng Z; Luo Z; Zhang X; Chen J; Li G; Sun Y
    J Inflamm Res; 2024; 17():1083-1094. PubMed ID: 38384372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher plasma levels of complement C3a, C4a and C5a increase the risk of subretinal fibrosis in neovascular age-related macular degeneration: Complement activation in AMD.
    Lechner J; Chen M; Hogg RE; Toth L; Silvestri G; Chakravarthy U; Xu H
    Immun Ageing; 2016; 13():4. PubMed ID: 26884800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of a new animal model of focal subretinal fibrosis that resembles disciform lesion in advanced age-related macular degeneration.
    Jo YJ; Sonoda KH; Oshima Y; Takeda A; Kohno R; Yamada J; Hamuro J; Yang Y; Notomi S; Hisatomi T; Ishibashi T
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6089-95. PubMed ID: 21051730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocyte and macrophage derived myofibroblasts: Is it fate? A review of the current evidence.
    Vierhout M; Ayoub A; Naiel S; Yazdanshenas P; Revill SD; Reihani A; Dvorkin-Gheva A; Shi W; Ask K
    Wound Repair Regen; 2021 Jul; 29(4):548-562. PubMed ID: 34107123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galectin-1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelial-mesenchymal transition.
    Wu D; Kanda A; Liu Y; Kase S; Noda K; Ishida S
    FASEB J; 2019 Feb; 33(2):2498-2513. PubMed ID: 30277820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal model of subretinal fibrosis without active choroidal neovascularization.
    Zandi S; Li Y; Jahnke L; Schweri-Olac A; Ishikawa K; Wada I; Nakao S; Zinkernagel MS; Enzmann V
    Exp Eye Res; 2023 Apr; 229():109428. PubMed ID: 36803995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.