BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 33239640)

  • 1. Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers.
    Shin JJH; Crook OM; Borgeaud AC; Cattin-Ortolá J; Peak-Chew SY; Breckels LM; Gillingham AK; Chadwick J; Lilley KS; Munro S
    Nat Commun; 2020 Nov; 11(1):5987. PubMed ID: 33239640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TBC1D23 is a bridging factor for endosomal vesicle capture by golgins at the trans-Golgi.
    Shin JJH; Gillingham AK; Begum F; Chadwick J; Munro S
    Nat Cell Biol; 2017 Dec; 19(12):1424-1432. PubMed ID: 29084197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network.
    Lieu ZZ; Derby MC; Teasdale RD; Hart C; Gunn P; Gleeson PA
    Mol Biol Cell; 2007 Dec; 18(12):4979-91. PubMed ID: 17914056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins.
    Wong M; Munro S
    Science; 2014 Oct; 346(6209):1256898. PubMed ID: 25359980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network.
    Jing J; Junutula JR; Wu C; Burden J; Matern H; Peden AA; Prekeris R
    Mol Biol Cell; 2010 Sep; 21(17):3041-53. PubMed ID: 20610657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role of GCC88 in the retrograde transport of CI-M6PR and the maintenance of lysosomal activity.
    Cui Y; Yang Z; Teasdale RD
    Cell Biol Int; 2019 Nov; 43(11):1234-1244. PubMed ID: 30791178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs.
    Wong M; Gillingham AK; Munro S
    BMC Biol; 2017 Jan; 15(1):3. PubMed ID: 28122620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Golgi tethering factor golgin-97 suppresses breast cancer cell invasiveness by modulating NF-κB activity.
    Hsu RM; Zhong CY; Wang CL; Liao WC; Yang C; Lin SY; Lin JW; Cheng HY; Li PY; Yu CJ
    Cell Commun Signal; 2018 Apr; 16(1):19. PubMed ID: 29703230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PKD-dependent PARP12-catalyzed mono-ADP-ribosylation of Golgin-97 is required for E-cadherin transport from Golgi to plasma membrane.
    Grimaldi G; Filograna A; Schembri L; Lo Monte M; Di Martino R; Pirozzi M; Spano D; Beccari AR; Parashuraman S; Luini A; Valente C; Corda D
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network.
    Lu L; Tai G; Hong W
    Mol Biol Cell; 2004 Oct; 15(10):4426-43. PubMed ID: 15269279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The golgin family exhibits a propensity to form condensates in living cells.
    Ziltener P; Rebane AA; Graham M; Ernst AM; Rothman JE
    FEBS Lett; 2020 Oct; 594(19):3086-3094. PubMed ID: 32668013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian GRIP domain proteins differ in their membrane binding properties and are recruited to distinct domains of the TGN.
    Derby MC; van Vliet C; Brown D; Luke MR; Lu L; Hong W; Stow JL; Gleeson PA
    J Cell Sci; 2004 Nov; 117(Pt 24):5865-74. PubMed ID: 15522892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97.
    Lock JG; Hammond LA; Houghton F; Gleeson PA; Stow JL
    Traffic; 2005 Dec; 6(12):1142-56. PubMed ID: 16262725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The WDR11 complex facilitates the tethering of AP-1-derived vesicles.
    Navarro Negredo P; Edgar JR; Manna PT; Antrobus R; Robinson MS
    Nat Commun; 2018 Feb; 9(1):596. PubMed ID: 29426865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo characterization of Drosophila golgins reveals redundancy and plasticity of vesicle capture at the Golgi apparatus.
    Park SY; Muschalik N; Chadwick J; Munro S
    Curr Biol; 2022 Nov; 32(21):4549-4564.e6. PubMed ID: 36103876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action of Arl1 GTPase and golgin Imh1 in Ypt6-independent retrograde transport from endosomes to the trans-Golgi network.
    Chen YT; Wang IH; Wang YH; Chiu WY; Hu JH; Chen WH; Lee FS
    Mol Biol Cell; 2019 Apr; 30(8):1008-1019. PubMed ID: 30726160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ARFRP1 functions upstream of ARL1 and ARL5 to coordinate recruitment of distinct tethering factors to the trans-Golgi network.
    Ishida M; Bonifacino JS
    J Cell Biol; 2019 Nov; 218(11):3681-3696. PubMed ID: 31575603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commonly used trafficking blocks disrupt ARF1 activation and the localization and function of specific Golgi proteins.
    Gilbert CE; Sztul E; Machamer CE
    Mol Biol Cell; 2018 Apr; 29(8):937-947. PubMed ID: 29467256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intersectin-1 interacts with the golgin GCC88 to couple the actin network and Golgi architecture.
    Makhoul C; Gosavi P; Duffield R; Delbridge B; Williamson NA; Gleeson PA
    Mol Biol Cell; 2019 Feb; 30(3):370-386. PubMed ID: 30540523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure.
    Derby MC; Lieu ZZ; Brown D; Stow JL; Goud B; Gleeson PA
    Traffic; 2007 Jun; 8(6):758-73. PubMed ID: 17488291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.