These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 33239889)

  • 1. Emerging Targets of Immunotherapy in Gynecologic Cancer.
    Cheng H; Zong L; Kong Y; Gu Y; Yang J; Xiang Y
    Onco Targets Ther; 2020; 13():11869-11882. PubMed ID: 33239889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging targets in cancer immunotherapy.
    Burugu S; Dancsok AR; Nielsen TO
    Semin Cancer Biol; 2018 Oct; 52(Pt 2):39-52. PubMed ID: 28987965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4.
    Qin S; Xu L; Yi M; Yu S; Wu K; Luo S
    Mol Cancer; 2019 Nov; 18(1):155. PubMed ID: 31690319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future.
    Pan M; Zhao H; Jin R; Leung PSC; Shuai Z
    Front Immunol; 2023; 14():1156212. PubMed ID: 37090741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical Insights Into Novel Immune Checkpoint Inhibitors.
    Lee JB; Ha SJ; Kim HR
    Front Pharmacol; 2021; 12():681320. PubMed ID: 34025438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules.
    D'Arrigo P; Tufano M; Rea A; Vigorito V; Novizio N; Russo S; Romano MF; Romano S
    Curr Med Chem; 2020; 27(15):2402-2448. PubMed ID: 30398102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Next generation of anti-immune checkpoints antibodies].
    Bonnefoy N; Olive D; Vanhove B
    Med Sci (Paris); 2019 Dec; 35(12):966-974. PubMed ID: 31903901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next generation of immune checkpoint therapy in cancer: new developments and challenges.
    Marin-Acevedo JA; Dholaria B; Soyano AE; Knutson KL; Chumsri S; Lou Y
    J Hematol Oncol; 2018 Mar; 11(1):39. PubMed ID: 29544515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review).
    Scutti JAB
    Int J Oncol; 2018 Apr; 52(4):1041-1056. PubMed ID: 29484440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting T cell costimulation in autoimmune disease.
    Stuart RW; Racke MK
    Expert Opin Ther Targets; 2002 Jun; 6(3):275-89. PubMed ID: 12223069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune Co-inhibitory Receptors CTLA-4, PD-1, TIGIT, LAG-3, and TIM-3 in Upper Tract Urothelial Carcinomas: A Large Cohort Study.
    Jin S; Shang Z; Wang W; Gu C; Wei Y; Zhu Y; Yang C; Zhang T; Zhu Y; Zhu Y; Wu J; Ye D
    J Immunother; 2023 May; 46(4):154-159. PubMed ID: 37017991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High expression of B7-H3 on stromal cells defines tumor and stromal compartments in epithelial ovarian cancer and is associated with limited immune activation.
    MacGregor HL; Sayad A; Elia A; Wang BX; Katz SR; Shaw PA; Clarke BA; Crome SQ; Robert-Tissot C; Bernardini MQ; Nguyen LT; Ohashi PS
    J Immunother Cancer; 2019 Dec; 7(1):357. PubMed ID: 31892360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tackling molecular targets beyond PD-1/PD-L1: Novel approaches to boost patients' response to cancer immunotherapy.
    Omar HA; Tolba MF
    Crit Rev Oncol Hematol; 2019 Mar; 135():21-29. PubMed ID: 30819443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of programmed death ligand 1 in drug-resistant osteosarcoma: An exploratory study.
    Skertich NJ; Chu F; Tarhoni IA; Szajek S; Borgia JA; Madonna MB
    Surg Open Sci; 2021 Oct; 6():10-14. PubMed ID: 34386763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-stimulatory agonists: An insight into the immunotherapy of cancer.
    Pourakbari R; Hajizadeh F; Parhizkar F; Aghebati-Maleki A; Mansouri S; Aghebati-Maleki L
    EXCLI J; 2021; 20():1055-1085. PubMed ID: 34267616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS.
    Sanmamed MF; Pastor F; Rodriguez A; Perez-Gracia JL; Rodriguez-Ruiz ME; Jure-Kunkel M; Melero I
    Semin Oncol; 2015 Aug; 42(4):640-55. PubMed ID: 26320067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Progress on tumor immune checkpoints and their inhibitors in tumor therapy].
    Wang L; Bai L
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2021 Jul; 37(7):663-670. PubMed ID: 34140079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PD-1 efficiently inhibits T cell activation even in the presence of co-stimulation through CD27 and GITR.
    Mizuno R; Maruhashi T; Sugiura D; Shimizu K; Watada M; Okazaki IM; Okazaki T
    Biochem Biophys Res Commun; 2019 Apr; 511(3):491-497. PubMed ID: 30771904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation of systemic soluble immune checkpoints in early breast cancer is attenuated following administration of neoadjuvant chemotherapy and is associated with recovery of CD27, CD28, CD40, CD80, ICOS and GITR and substantially increased levels of PD-L1, LAG-3 and TIM-3.
    Rapoport BL; Steel HC; Benn CA; Nayler S; Smit T; Heyman L; Theron AJ; Hlatshwayo N; Kwofie LLI; Meyer PWA; Anderson R
    Front Oncol; 2023; 13():1097309. PubMed ID: 37064132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach.
    Kgatle MM; Boshomane TMG; Lawal IO; Mokoala KMG; Mokgoro NP; Lourens N; Kairemo K; Zeevaart JR; Vorster M; Sathekge MM
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.