These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 33240449)

  • 1. REM sleep loss-induced elevated noradrenaline could predispose an individual to psychosomatic disorders: a review focused on proposal for prediction, prevention, and personalized treatment.
    Mehta R; Giri S; Mallick BN
    EPMA J; 2020 Dec; 11(4):529-549. PubMed ID: 33240449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep and Neuroimmunomodulation for Maintenance of Optimum Brain Function: Role of Noradrenaline.
    Mehta R; Bhattacharya R; Mallick BN
    Brain Sci; 2022 Dec; 12(12):. PubMed ID: 36552184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REM sleep and its Loss-Associated Epigenetic Regulation with Reference to Noradrenaline in Particular.
    Mehta R; Singh A; Bókkon I; Nath Mallick B
    Curr Neuropharmacol; 2016; 14(1):28-40. PubMed ID: 26813120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid eye movement sleep loss associated cytomorphometric changes and neurodegeneration.
    Ranjan A; Biswas S; Mallick BN
    Sleep Med; 2023 Oct; 110():25-34. PubMed ID: 37524037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. REM Sleep Loss-Induced Elevated Noradrenaline Plays a Significant Role in Neurodegeneration: Synthesis of Findings to Propose a Possible Mechanism of Action from Molecule to Patho-Physiological Changes.
    Giri S; Mehta R; Mallick BN
    Brain Sci; 2023 Dec; 14(1):. PubMed ID: 38275513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting modulation of noradrenalin release in the brain for amelioration of REMS loss-associated effects.
    Singh A; Mallick BN
    J Transl Int Med; 2015; 3(1):8-16. PubMed ID: 27847879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term vs. short-term processes regulating REM sleep.
    Franken P
    J Sleep Res; 2002 Mar; 11(1):17-28. PubMed ID: 11869422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations of Subjective Sleep Quality with Wearable Device-Derived Resting Heart Rate During REM Sleep and Non-REM Sleep in a Cohort of Japanese Office Workers.
    Sjöland O; Svensson T; Madhawa K; Nt H; Chung UI; Svensson AK
    Nat Sci Sleep; 2024; 16():867-877. PubMed ID: 38947940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of systematic relationships between REMS duration episodes and spectral power Delta and Ultra-Slow bands in contiguous NREMS episodes in healthy humans.
    Le Bon O; Linkowski P
    J Neurophysiol; 2013 Jul; 110(1):162-9. PubMed ID: 23596336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. REM sleep loss increases brain excitability: role of noradrenaline and its mechanism of action.
    Mallick BN; Singh A
    Sleep Med Rev; 2011 Jun; 15(3):165-78. PubMed ID: 21482157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of inactivation process initiates rapid eye movement sleep.
    Mallick BN; Singh A; Khanday MA
    Prog Neurobiol; 2012 Jun; 97(3):259-76. PubMed ID: 22521402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REM sleep modulation by perifornical orexinergic inputs to the pedunculo-pontine tegmental neurons in rats.
    Khanday MA; Mallick BN
    Neuroscience; 2015 Nov; 308():125-33. PubMed ID: 26362884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in EEG activity and hypothalamic temperature as indices for non-REM sleep to REM sleep transitions.
    Capitani P; Cerri M; Amici R; Baracchi F; Jones CA; Luppi M; Perez E; Parmeggiani PL; Zamboni G
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):182-7. PubMed ID: 15936533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heart rate dynamics during human sleep.
    Cajochen C; Pischke J; Aeschbach D; Borbély AA
    Physiol Behav; 1994 Apr; 55(4):769-74. PubMed ID: 8190808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Eye Movement Sleep Deprivation Induces Neuronal Apoptosis by Noradrenaline Acting on Alpha1 Adrenoceptor and by Triggering Mitochondrial Intrinsic Pathway.
    Somarajan BI; Khanday MA; Mallick BN
    Front Neurol; 2016; 7():25. PubMed ID: 27014180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of dopamine and GABA in substantia nigra for the regulation of rapid eye movement sleep in rats.
    Yadav RK; Khanday MA; Mallick BN
    Behav Brain Res; 2019 Dec; 376():112169. PubMed ID: 31442548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 'scanning hypothesis' of rapid eye movements during REM sleep: a review of the evidence.
    Arnulf I
    Arch Ital Biol; 2011 Dec; 149(4):367-82. PubMed ID: 22205589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noradrenaline Acting on Alpha1 Adrenoceptor as well as by Chelating Iron Reduces Oxidative Burden on the Brain: Implications With Rapid Eye Movement Sleep.
    Singh A; Das G; Kaur M; Mallick BN
    Front Mol Neurosci; 2019; 12():7. PubMed ID: 30837837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.