BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 33240452)

  • 1. Quantitative proteomics revealed energy metabolism pathway alterations in human epithelial ovarian carcinoma and their regulation by the antiparasite drug ivermectin: data interpretation in the context of 3P medicine.
    Li N; Li H; Wang Y; Cao L; Zhan X
    EPMA J; 2020 Dec; 11(4):661-694. PubMed ID: 33240452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes.
    Li N; Zhan X; Zhan X
    Gynecol Oncol; 2018 Aug; 150(2):343-354. PubMed ID: 29921511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SILAC quantitative proteomics analysis of ivermectin-related proteomic profiling and molecular network alterations in human ovarian cancer cells.
    Li N; Li J; Desiderio DM; Zhan X
    J Mass Spectrom; 2021 Jan; 56(1):e4659. PubMed ID: 33047383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-parasite drug ivermectin can suppress ovarian cancer by regulating lncRNA-EIF4A3-mRNA axes.
    Li N; Zhan X
    EPMA J; 2020 Jun; 11(2):289-309. PubMed ID: 32549918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative phosphoproteomics reveals molecular pathway network alterations in human early-stage primary hepatic carcinomas: potential for 3P medical approach.
    Zhang Y; Li N; Yang L; Jia W; Li Z; Shao Q; Zhan X
    EPMA J; 2023 Sep; 14(3):477-502. PubMed ID: 37605650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment.
    Li N; Zhao L; Zhan X
    J Cell Physiol; 2021 Apr; 236(4):2959-2975. PubMed ID: 32959892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the "reverse Warburg effect" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers.
    Witkiewicz AK; Whitaker-Menezes D; Dasgupta A; Philp NJ; Lin Z; Gandara R; Sneddon S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Mar; 11(6):1108-17. PubMed ID: 22313602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling pathway network alterations in human ovarian cancers identified with quantitative mitochondrial proteomics.
    Li N; Zhan X
    EPMA J; 2019 Jun; 10(2):153-172. PubMed ID: 31258820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of the mitochondrial proteome in human ovarian carcinomas.
    Li N; Li H; Cao L; Zhan X
    Endocr Relat Cancer; 2018 Oct; 25(10):909-931. PubMed ID: 29997262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer.
    Curry JM; Tuluc M; Whitaker-Menezes D; Ames JA; Anantharaman A; Butera A; Leiby B; Cognetti DM; Sotgia F; Lisanti MP; Martinez-Outschoorn UE
    Cell Cycle; 2013 May; 12(9):1371-84. PubMed ID: 23574725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circ-PGAM1 promotes malignant progression of epithelial ovarian cancer through regulation of the miR-542-3p/CDC5L/PEAK1 pathway.
    Zhang C; Li Y; Zhao W; Liu G; Yang Q
    Cancer Med; 2020 May; 9(10):3500-3521. PubMed ID: 32167655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.
    Pavlides S; Whitaker-Menezes D; Castello-Cros R; Flomenberg N; Witkiewicz AK; Frank PG; Casimiro MC; Wang C; Fortina P; Addya S; Pestell RG; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2009 Dec; 8(23):3984-4001. PubMed ID: 19923890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquitinomics revealed disease- and stage-specific patterns relevant for the 3PM approach in human sigmoid colon cancers.
    Yang H; Li N; Chen L; Zhou L; Zhou Y; Liu J; Jia W; Chen R; Su J; Yang L; Gong X; Zhan X
    EPMA J; 2023 Sep; 14(3):503-525. PubMed ID: 37605648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MASS SPECTROMETRY-BASED MITOCHONDRIAL PROTEOMICS IN HUMAN OVARIAN CANCERS.
    Li N; Zhan X
    Mass Spectrom Rev; 2020 Sep; 39(5-6):471-498. PubMed ID: 32020673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription.
    Wang Y; Yun Y; Wu B; Wen L; Wen M; Yang H; Zhao L; Liu W; Huang S; Wen N; Li Y
    Oncotarget; 2016 Jul; 7(30):47985-47997. PubMed ID: 27351131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism.
    Samec M; Liskova A; Koklesova L; Samuel SM; Zhai K; Buhrmann C; Varghese E; Abotaleb M; Qaradakhi T; Zulli A; Kello M; Mojzis J; Zubor P; Kwon TK; Shakibaei M; Büsselberg D; Sarria GR; Golubnitschaja O; Kubatka P
    EPMA J; 2020 Sep; 11(3):377-398. PubMed ID: 32843908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adrenomedullin induces cisplatin chemoresistance in ovarian cancer through reprogramming of glucose metabolism.
    Dou L; Lu E; Tian D; Li F; Deng L; Zhang Y
    J Transl Int Med; 2023 Jul; 11(2):169-177. PubMed ID: 37408575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal spindle-like microcephaly-associated protein promotes proliferation by regulating cell cycle in epithelial ovarian cancer.
    Wu Y; You Y; Chen L; Liu Y; Liu Y; Lou W; Fu F
    Gland Surg; 2022 Apr; 11(4):687-701. PubMed ID: 35531115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3.
    Teng Y; Zhang Y; Qu K; Yang X; Fu J; Chen W; Li X
    Oncotarget; 2015 Dec; 6(38):40799-814. PubMed ID: 26512921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Lin Z; Ertel A; Flomenberg N; Witkiewicz AK; Birbe RC; Howell A; Pavlides S; Gandara R; Pestell RG; Sotgia F; Philp NJ; Lisanti MP
    Cell Cycle; 2011 Jun; 10(11):1772-83. PubMed ID: 21558814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.