These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 332405)

  • 1. Effects of muscle contraction and of adenosine on capillary transport and microvascular flow in dog skeletal muscle.
    Durán WN
    Circ Res; 1977 Nov; 41(5):642-7. PubMed ID: 332405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of muscle metabolism and muscle blood flow in capillary units during contraction.
    Murrant CL; Sarelius IH
    Acta Physiol Scand; 2000 Apr; 168(4):531-41. PubMed ID: 10759590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular blood flow distribution in skeletal muscle. An intravital microscopic study in the rabbit.
    Lindbom L
    Acta Physiol Scand Suppl; 1983; 525():1-40. PubMed ID: 6588730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of exercise vasodilatation by adenosine deaminase in anaesthetized dogs.
    Goonewardene IP; Karim F
    J Physiol; 1991 Oct; 442():65-79. PubMed ID: 1798047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary response to skeletal muscle contraction: evidence that redundancy between vasodilators is physiologically relevant during active hyperaemia.
    Lamb IR; Novielli NM; Murrant CL
    J Physiol; 2018 Apr; 596(8):1357-1372. PubMed ID: 29417589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic control of large-bore arterial resistance vessels, arterioles, and veins in cat skeletal muscle during exercise.
    Björnberg J; Maspers M; Mellander S
    Acta Physiol Scand; 1989 Feb; 135(2):83-94. PubMed ID: 2923003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appearance of adenosine in venous blood from the contracting gracilis muscle and its role in vasodilatation in the dog.
    Ballard HJ; Cotterrell D; Karim F
    J Physiol; 1987 Jun; 387():401-13. PubMed ID: 3656179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential sensitivity of arteriolar alpha 1- and alpha 2-adrenoceptor constriction to metabolic inhibition during rat skeletal muscle contraction.
    Anderson KM; Faber JE
    Circ Res; 1991 Jul; 69(1):174-84. PubMed ID: 1647277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of contraction-induced arteriolar vasodilation by adenosine deaminase or theophylline.
    Proctor KG
    Am J Physiol; 1984 Aug; 247(2 Pt 2):H195-205. PubMed ID: 6465328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of histamine on microvasculature of isolated dog gracilis muscle.
    McNamee JE; Grodins FS
    Am J Physiol; 1975 Jul; 229(1):119-25. PubMed ID: 238403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Venous adenosine content and vascular responses in dog hind-limb skeletal muscles during twitch contraction.
    Ballard HJ; Cotterrell D; Karim F
    Q J Exp Physiol; 1987 Oct; 72(4):461-71. PubMed ID: 3423195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of adenosine to arteriolar autoregulation in striated muscle.
    Morff RJ; Granger HJ
    Am J Physiol; 1983 Apr; 244(4):H567-76. PubMed ID: 6837757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of exercise training on coronary transport capacity.
    Laughlin MH
    J Appl Physiol (1985); 1985 Feb; 58(2):468-76. PubMed ID: 3920188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic inhibition of sympathetic fibers participating in vasodilatation in response to K+-induced contraction of frog skeletal muscle.
    Fuglsang A; Crone C
    Clin Invest Med; 1988 Oct; 11(5):357-65. PubMed ID: 2846221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary recruitment and heterogeneity of microvascular flow in skeletal muscle before and after contraction.
    Tyml K
    Microvasc Res; 1986 Jul; 32(1):84-98. PubMed ID: 3488492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diameter changes in arteriolar networks of contracting skeletal muscle.
    Dodd LR; Johnson PC
    Am J Physiol; 1991 Mar; 260(3 Pt 2):H662-70. PubMed ID: 2000963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog.
    Granger HJ; Goodman AH; Granger DN
    Circ Res; 1976 May; 38(5):379-85. PubMed ID: 1269076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active and passive capillary control in red muscle at rest and in exercise.
    Honig CR; Odoroff CL; Frierson JL
    Am J Physiol; 1982 Aug; 243(2):H196-206. PubMed ID: 7114231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of blood flow rate on adenosine release from contracting dog skeletal muscle.
    Ballard HJ; Cotterrell D; Karim F
    Q J Exp Physiol; 1989 Mar; 74(2):97-107. PubMed ID: 2727250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.