These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33240598)

  • 1. Fire weather effects on flammability of indigenous and invasive alien plants in coastal fynbos and thicket shrublands (Cape Floristic Region).
    Msweli ST; Potts AJ; Fritz H; Kraaij T
    PeerJ; 2020; 8():e10161. PubMed ID: 33240598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuel trait effects on flammability of native and invasive alien shrubs in coastal fynbos and thicket (Cape Floristic Region).
    Kraaij T; Msweli ST; Potts AJ
    PeerJ; 2022; 10():e13765. PubMed ID: 35919404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition.
    Santana VM; Marrs RH
    J Environ Manage; 2014 Jun; 139():88-96. PubMed ID: 24681648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vegetation of Holocene coastal dunes of the Cape south coast, South Africa.
    Cowling RM; Cawthra H; Privett S; Grobler BA
    PeerJ; 2023; 11():e16427. PubMed ID: 38107568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.
    Fuentes-Ramirez A; Veldman JW; Holzapfel C; Moloney KA
    Ecol Appl; 2016 Oct; 26(7):2311-2322. PubMed ID: 27755715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canopy plant composition and structure of Cape subtropical dune thicket are predicted by the levels of fire exposure.
    Strydom T; Kraaij T; Grobler BA; Cowling RM
    PeerJ; 2022; 10():e14310. PubMed ID: 36389405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland.
    Kraaij T; Cowling RM; van Wilgen BW; Rikhotso DR; Difford M
    PeerJ; 2017; 5():e3591. PubMed ID: 28828239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensifying postfire weather and biological invasion drive species loss in a Mediterranean-type biodiversity hotspot.
    Slingsby JA; Merow C; Aiello-Lammens M; Allsopp N; Hall S; Kilroy Mollmann H; Turner R; Wilson AM; Silander JA
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4697-4702. PubMed ID: 28416700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flammability thresholds or flammability gradients? Determinants of fire across savanna-forest transitions.
    Newberry BM; Power CR; Abreu RCR; Durigan G; Rossatto DR; Hoffmann WA
    New Phytol; 2020 Nov; 228(3):910-921. PubMed ID: 33410161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk.
    Baeza MJ; De Luís M; Raventós J; Escarré A
    J Environ Manage; 2002 Jun; 65(2):199-208. PubMed ID: 12197080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age.
    Collins L; Bennett AF; Leonard SWJ; Penman TD
    Glob Chang Biol; 2019 Nov; 25(11):3829-3843. PubMed ID: 31215102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of flammability in savanna grass species.
    Simpson KJ; Ripley BS; Christin PA; Belcher CM; Lehmann CE; Thomas GH; Osborne CP
    J Ecol; 2016 Jan; 104(1):138-148. PubMed ID: 26877549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection.
    Clarke PJ; Prior LD; French BJ; Vincent B; Knox KJ; Bowman DM
    Oecologia; 2014 Dec; 176(4):1123-33. PubMed ID: 25234374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fire severity effects on resprouting of subtropical dune thicket of the Cape Floristic Region.
    Strydom T; Kraaij T; Difford M; Cowling RM
    PeerJ; 2020; 8():e9240. PubMed ID: 32566395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model.
    Keeley JE; Zedler PH
    Ecol Appl; 2009 Jan; 19(1):69-94. PubMed ID: 19323174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fire management impacts on invasive plants in the western United States.
    Keeley JE
    Conserv Biol; 2006 Apr; 20(2):375-84. PubMed ID: 16903098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deconstructing the King megafire.
    Coen JL; Stavros EN; Fites-Kaufman JA
    Ecol Appl; 2018 Sep; 28(6):1565-1580. PubMed ID: 29797684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006.
    Podur JJ; Martell DL
    Ecol Appl; 2009 Jul; 19(5):1246-52. PubMed ID: 19688931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adding fuel to the fire? Revegetation influences wildfire size and intensity.
    Collins L; Penman TD; Price OF; Bradstock RA
    J Environ Manage; 2015 Mar; 150():196-205. PubMed ID: 25500136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior.
    Blauw LG; Wensink N; Bakker L; van Logtestijn RS; Aerts R; Soudzilovskaia NA; Cornelissen JH
    Ecol Evol; 2015 Sep; 5(17):3830-41. PubMed ID: 26380709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.