BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33240750)

  • 21. Construction of Boron- and Nitrogen-Enriched Nanoporous π-Conjugated Networks Towards Enhanced Hydrogen Activation.
    Li M; Qiu L; Popovs I; Yang W; Ivanov AS; Kobayashi T; Thapaliya BP; Moitra D; Yu X; Wu Z; Yang Z; Dai S
    Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202302684. PubMed ID: 37159903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric hydrogenation in the core of dendrimers.
    He YM; Feng Y; Fan QH
    Acc Chem Res; 2014 Oct; 47(10):2894-906. PubMed ID: 25247446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MoS
    Majdoub M; Amedlous A; Anfar Z; Moussaoui O
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):64674-64686. PubMed ID: 34313935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Permanent porous hydrogen-bonded frameworks with two types of Brønsted acid sites for heterogeneous asymmetric catalysis.
    Gong W; Chu D; Jiang H; Chen X; Cui Y; Liu Y
    Nat Commun; 2019 Feb; 10(1):600. PubMed ID: 30723208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Progress in Metal-Free Covalent Organic Frameworks as Heterogeneous Catalysts.
    Zhi Y; Wang Z; Zhang HL; Zhang Q
    Small; 2020 Jun; 16(24):e2001070. PubMed ID: 32419332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defect-Regulated Frustrated-Lewis-Pair Behavior of Boron Nitride in Ambient Pressure Hydrogen Activation.
    Chen H; Xiong C; Moon J; Ivanov AS; Lin W; Wang T; Fu J; Jiang DE; Wu Z; Yang Z; Dai S
    J Am Chem Soc; 2022 Jun; 144(24):10688-10693. PubMed ID: 35588497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of Monophosphine-Metal Complexes in Privileged Diphosphine-Based Covalent Organic Frameworks for Catalytic Asymmetric Hydrogenation.
    Zheng Z; Yuan C; Sun M; Dong J; Liu Y; Cui Y
    J Am Chem Soc; 2023 Mar; 145(11):6100-6111. PubMed ID: 36898039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic Control via Binding Sites within the Confined Space of Metal Metalloporphyrin-Frameworks for Enhanced Shape-Selectivity Catalysis.
    Zhang W; Lu Z; Wojtas L; Chen YS; Baker AA; Liu YS; Al-Enizi AM; Nafady A; Ma S
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202304303. PubMed ID: 37130008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transition Metal (Co, Ni, Fe, Cu) Single-Atom Catalysts Anchored on 3D Nitrogen-Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn-Air Battery.
    Zhang M; Li H; Chen J; Ma FX; Zhen L; Wen Z; Xu CY
    Small; 2022 Aug; 18(34):e2202476. PubMed ID: 35905493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchronizing Substrate Activation Rates in Multicomponent Reactions with Metal-Organic Framework Catalysts.
    Aguirre-Díaz LM; Iglesias M; Snejko N; Gutiérrez-Puebla E; Monge MÁ
    Chemistry; 2016 May; 22(19):6654-65. PubMed ID: 27010759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal Nodes of Metal-Organic Frameworks can Activate Molecular Hydrogen.
    Melillo A; Franconetti A; Alvaro M; Ferrer B; Garcia H
    Chemistry; 2023 Jan; 29(1):e202202625. PubMed ID: 36152311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photo-Induced Active Lewis Acid-Base Pairs in a Metal-Organic Framework for H
    Ng BKY; Zhou ZJ; Liu TT; Yoskamtorn T; Li G; Wu TS; Soo YL; Wu XP; Tsang SCE
    J Am Chem Soc; 2023 Sep; 145(35):19312-19320. PubMed ID: 37611205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual functionalization of porous aromatic frameworks as a new platform for heterogeneous cascade catalysis.
    Zhang Y; Li B; Ma S
    Chem Commun (Camb); 2014 Aug; 50(62):8507-10. PubMed ID: 24947140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering single-atom active sites anchored covalent organic frameworks for efficient metallaphotoredox CN cross-coupling reactions.
    Li Z; Qiu S; Song Y; Huang S; Gao J; Sun L; Hou J
    Sci Bull (Beijing); 2022 Oct; 67(19):1971-1981. PubMed ID: 36546207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis.
    Chen X; Peng Y; Han X; Liu Y; Lin X; Cui Y
    Nat Commun; 2017 Dec; 8(1):2171. PubMed ID: 29259195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermo-, Electro-, and Photocatalytic CO
    Wu QJ; Liang J; Huang YB; Cao R
    Acc Chem Res; 2022 Oct; 55(20):2978-2997. PubMed ID: 36153952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous and robust lanthanide metal-organoboron frameworks as water tolerant Lewis acid catalysts.
    Liu Y; Mo K; Cui Y
    Inorg Chem; 2013 Sep; 52(18):10286-91. PubMed ID: 24032463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Stable Zr(IV)-Based Metal-Organic Frameworks with Chiral Phosphoric Acids for Catalytic Asymmetric Tandem Reactions.
    Gong W; Chen X; Jiang H; Chu D; Cui Y; Liu Y
    J Am Chem Soc; 2019 May; 141(18):7498-7508. PubMed ID: 30986351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergic Catalysts of Polyoxometalate@Cationic Porous Aromatic Frameworks: Reciprocal Modulation of Both Capture and Conversion Materials.
    Song J; Li Y; Cao P; Jing X; Faheem M; Matsuo Y; Zhu Y; Tian Y; Wang X; Zhu G
    Adv Mater; 2019 Oct; 31(40):e1902444. PubMed ID: 31418940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaction Rate Acceleration of Cooperative Catalytic Systems: Metal Nanoparticles and Lewis Acids in Arene Hydrogenation.
    Miyamura H; Kobayashi S
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202201203. PubMed ID: 35358361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.