These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33240839)

  • 1. Two-Dimensional Numerical Study of Methane-Air Combustion Within Catalytic and Non-catalytic Porous Medium.
    Gao HB; Zong SC; Feng XB; Zhang CW
    Front Chem; 2020; 8():511792. PubMed ID: 33240839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropy Generation and Exergy Analysis of Premixed Fuel-Air Combustion in Micro Porous Media Burner.
    Ismail NC; Abdullah MZ; Mazlan NM; Mustafa KF
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Response of Ultralean Combustion of CH
    Habib R; Yadollahi B; Saeed A; Doranehgard MH; Karimi N
    Energy Fuels; 2021 May; 35(10):8909-8921. PubMed ID: 34276125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the Cross-Section of a Porous Burner on the Combustion Stability Limit of Premixed Oxy-Methane Flames.
    Liao M; He Z; Liang X; Li Y; Xu X
    ACS Omega; 2023 Dec; 8(50):48258-48268. PubMed ID: 38144048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical prediction of radiative heat transfer in reciprocating superadiabatic combustion in porous media.
    Du L; Xie M
    J Environ Sci (China); 2011 Jun; 23 Suppl():S26-31. PubMed ID: 25084588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and numerical studies on combustion characteristics of N
    Li H; Shi J; Mao M; Liu Y
    R Soc Open Sci; 2019 Sep; 6(9):190492. PubMed ID: 31598292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lean-rich combustion characteristics of methane and ammonia in the combined porous structures for carbon reduction and alternative fuel development.
    Dai H; Gao X; Liu C; Dai H; Zhang L
    Sci Total Environ; 2024 Aug; 938():173375. PubMed ID: 38797416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient Combustion Characteristics of Methane-Hydrogen Mixtures in Porous Media Burner.
    Huang T; Ren X; Chen Y; Ma J; Yi D; Wan Z; Yu B; Zeng W
    ACS Omega; 2024 Apr; 9(17):19525-19535. PubMed ID: 38708215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance analysis of a biogas operated porous radiant burner for domestic cooking application.
    Kaushik LK; Mahalingam AK; Palanisamy M
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12168-12177. PubMed ID: 33043422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-Layer Micro Porous Media Burner from Lean to Rich Fuel Mixture: Analysis of Entropy Generation and Exergy Efficiency.
    Ismail NC; Abdullah MZ; Mustafa KF; Mazlan NM; Gunnasegaran P; Irawan AP
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental study on coflow diffusion combustion in a pellet-packed bed with different bed lengths.
    Shi J; Liu Y; Liu Y; Mao M; Xia Y; Ma R; Xu Y
    R Soc Open Sci; 2018 Aug; 5(8):172027. PubMed ID: 30224986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emission Characteristics of Heat Recirculating Porous Burners With High Temperature Energy Extraction.
    Banerjee A; Saveliev A
    Front Chem; 2020; 8():67. PubMed ID: 32117890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small porous-plug burner for studies of combustion chemistry and soot formation.
    Campbell MF; Schrader PE; Catalano AL; Johansson KO; Bohlin GA; Richards-Henderson NK; Kliewer CJ; Michelsen HA
    Rev Sci Instrum; 2017 Dec; 88(12):125106. PubMed ID: 29289223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of a porous burner for the mitigation of anthropogenic methane emissions.
    Wood S; Fletcher DF; Joseph SD; Dawson A; Harris AT
    Environ Sci Technol; 2009 Dec; 43(24):9329-34. PubMed ID: 20000525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Chemical Kinetics on Predictions of Performance of Syngas Production From Fuel-Rich Combustion of CO
    Shi J; Mao M; Li H; Liu Y; Liu Y; Deng Y
    Front Chem; 2019; 7():902. PubMed ID: 32039142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Simulation of the Combustion Characteristics in a Flue Gas Internal Recirculation Burner.
    Zhang L; Wu C; Zhang J; Zhang B; Sui C
    ACS Omega; 2022 Nov; 7(46):42264-42271. PubMed ID: 36440137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Study on Flame Stabilization and NO
    Zhang F; Kurjata M; Sebbar N; Zirwes T; Fedoryk M; Harth S; Wang R; Habisreuther P; Trimis D; Bockhorn H
    Energy Fuels; 2022 Apr; 36(7):4094-4106. PubMed ID: 35431431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpraySyn-A standardized burner configuration for nanoparticle synthesis in spray flames.
    Schneider F; Suleiman S; Menser J; Borukhovich E; Wlokas I; Kempf A; Wiggers H; Schulz C
    Rev Sci Instrum; 2019 Aug; 90(8):085108. PubMed ID: 31472649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio.
    Rocha RC; Zhong S; Xu L; Bai XS; Costa M; Cai X; Kim H; Brackmann C; Li Z; Aldén M
    Energy Fuels; 2021 May; 35(9):7179-7192. PubMed ID: 34054210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dataset of temperature, heat flux and infrared emission from flat premixed laminar methane-air flames.
    Pelzmann T; Robert É
    Data Brief; 2022 Jun; 42():108281. PubMed ID: 35651669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.