BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33241200)

  • 1. CARM1 Regulates AMPK Signaling in Skeletal Muscle.
    Stouth DW; vanLieshout TL; Ng SY; Webb EK; Manta A; Moll Z; Ljubicic V
    iScience; 2020 Nov; 23(11):101755. PubMed ID: 33241200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CARM1 drives mitophagy and autophagy flux during fasting-induced skeletal muscle atrophy.
    Stouth DW; vanLieshout TL; Mikhail AI; Ng SY; Raziee R; Edgett BA; Vasam G; Webb EK; Gilotra KS; Markou M; Pineda HC; Bettencourt-Mora BG; Noor H; Moll Z; Bittner ME; Gurd BJ; Menzies KJ; Ljubicic V
    Autophagy; 2024 Jun; 20(6):1247-1269. PubMed ID: 38018843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CARM1 transcriptome and arginine methylproteome mediate skeletal muscle integrative biology.
    vanLieshout TL; Stouth DW; Hartel NG; Vasam G; Ng SY; Webb EK; Rebalka IA; Mikhail AI; Graham NA; Menzies KJ; Hawke TJ; Ljubicic V
    Mol Metab; 2022 Oct; 64():101555. PubMed ID: 35872306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein arginine methyltransferase expression, localization, and activity during disuse-induced skeletal muscle plasticity.
    Stouth DW; Manta A; Ljubicic V
    Am J Physiol Cell Physiol; 2018 Feb; 314(2):C177-C190. PubMed ID: 29092819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear AMPK regulated CARM1 stabilization impacts autophagy in aged heart.
    Li C; Yu L; Xue H; Yang Z; Yin Y; Zhang B; Chen M; Ma H
    Biochem Biophys Res Commun; 2017 Apr; 486(2):398-405. PubMed ID: 28315332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle.
    Ljubicic V; Khogali S; Renaud JM; Jasmin BJ
    Am J Physiol Cell Physiol; 2012 Jan; 302(1):C110-21. PubMed ID: 21940670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice.
    Ng SY; Mikhail A; Ljubicic V
    J Physiol; 2019 Sep; 597(18):4757-4778. PubMed ID: 31361024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CARM1 contributes to skeletal muscle wasting by mediating FoxO3 activity and promoting myofiber autophagy.
    Liu Y; Li J; Shang Y; Guo Y; Li Z
    Exp Cell Res; 2019 Jan; 374(1):198-209. PubMed ID: 30500392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of short-term, pharmacological CARM1 inhibition on skeletal muscle mass, function, and atrophy in mice.
    Webb EK; Ng SY; Mikhail AI; Stouth DW; vanLieshout TL; Syroid AL; Ljubicic V
    Am J Physiol Endocrinol Metab; 2023 Sep; 325(3):E252-E266. PubMed ID: 37493245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex-Specific Effect of CARM1 in Skeletal Muscle Adaptations to Exercise.
    Vanlieshout TL; Stouth DW; Raziee R; Sraka AJ; Masood HA; Ng SY; Mattina SR; Mikhail AI; Manta A; Ljubicic V
    Med Sci Sports Exerc; 2024 Mar; 56(3):486-498. PubMed ID: 37882083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy.
    Shin HJ; Kim H; Oh S; Lee JG; Kee M; Ko HJ; Kweon MN; Won KJ; Baek SH
    Nature; 2016 Jun; 534(7608):553-7. PubMed ID: 27309807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of AMP-activated protein kinase in the expression of the dystrophin-associated protein complex in skeletal muscle.
    Dial AG; Rooprai P; Lally JS; Bujak AL; Steinberg GR; Ljubicic V
    FASEB J; 2018 Jun; 32(6):2950-2965. PubMed ID: 29401588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of AMPK in Neuromuscular Biology and Disease.
    Dial AG; Ng SY; Manta A; Ljubicic V
    Trends Endocrinol Metab; 2018 May; 29(5):300-312. PubMed ID: 29572064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
    Jørgensen SB; Wojtaszewski JF; Viollet B; Andreelli F; Birk JB; Hellsten Y; Schjerling P; Vaulont S; Neufer PD; Richter EA; Pilegaard H
    FASEB J; 2005 Jul; 19(9):1146-8. PubMed ID: 15878932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle PI3K p110β regulates expression of AMP-activated protein kinase.
    Matheny RW; Abdalla MN; Geddis AV; Leandry LA; Lynch CM
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1420-1426. PubMed ID: 27965101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise-induced Protein Arginine Methyltransferase Expression in Skeletal Muscle.
    Vanlieshout TL; Stouth DW; Tajik T; Ljubicic V
    Med Sci Sports Exerc; 2018 Mar; 50(3):447-457. PubMed ID: 29112628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha.
    Jäger S; Handschin C; St-Pierre J; Spiegelman BM
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):12017-22. PubMed ID: 17609368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells.
    Wang SC; Dowhan DH; Eriksson NA; Muscat GE
    Biochem J; 2012 Jun; 444(2):323-31. PubMed ID: 22428544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMPK does not play a requisite role in regulation of PPARGC1A gene expression via the alternative promoter in endurance-trained human skeletal muscle.
    Popov DV; Lysenko EA; Butkov AD; Vepkhvadze TF; Perfilov DV; Vinogradova OL
    Exp Physiol; 2017 Mar; 102(3):366-375. PubMed ID: 28074493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic and transcriptional regulation of autophagy.
    Shin HR; Kim H; Kim KI; Baek SH
    Autophagy; 2016 Nov; 12(11):2248-2249. PubMed ID: 27487449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.