These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33241636)

  • 1. Plant Nanobionic Sensors for Arsenic Detection.
    Lew TTS; Park M; Cui J; Strano MS
    Adv Mater; 2021 Jan; 33(1):e2005683. PubMed ID: 33241636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.
    Wong MH; Giraldo JP; Kwak SY; Koman VB; Sinclair R; Lew TT; Bisker G; Liu P; Strano MS
    Nat Mater; 2017 Feb; 16(2):264-272. PubMed ID: 27798623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants.
    Indriolo E; Na G; Ellis D; Salt DE; Banks JA
    Plant Cell; 2010 Jun; 22(6):2045-57. PubMed ID: 20530755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPE based soil processing and aptasensor integrated detection system for rapid on site screening of arsenic contamination in soil.
    Siddiqui MF; Khan ZA; Jeon H; Park S
    Ecotoxicol Environ Saf; 2020 Jun; 196():110559. PubMed ID: 32259761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second near-infrared fluorescent Metal-Organic framework sensors for in vivo extracellular adenosine triphosphate monitoring.
    Qiu Q; Sun S; Yuan H; Zhang S; Feng Y; Wang F; Zhu Y; Zhou M; Wang Y
    Biosens Bioelectron; 2024 May; 251():116114. PubMed ID: 38354495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring.
    Giraldo JP; Landry MP; Kwak SY; Jain RM; Wong MH; Iverson NM; Ben-Naim M; Strano MS
    Small; 2015 Aug; 11(32):3973-84. PubMed ID: 25981520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extractive recovery and valorisation of arsenic from contaminated soil through phytoremediation using Pteris cretica.
    Eze VC; Harvey AP
    Chemosphere; 2018 Oct; 208():484-492. PubMed ID: 29886337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem.
    Merulla D; Buffi N; Beggah S; Truffer F; Geiser M; Renaud P; van der Meer JR
    Curr Opin Biotechnol; 2013 Jun; 24(3):534-41. PubMed ID: 22999825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localizing the biochemical transformations of arsenate in a hyperaccumulating fern.
    Pickering IJ; Gumaelius L; Harris HH; Prince RC; Hirsch G; Banks JA; Salt DE; George GN
    Environ Sci Technol; 2006 Aug; 40(16):5010-4. PubMed ID: 16955900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring Plant Health with Near-Infrared Fluorescent H
    Wu H; Nißler R; Morris V; Herrmann N; Hu P; Jeon SJ; Kruss S; Giraldo JP
    Nano Lett; 2020 Apr; 20(4):2432-2442. PubMed ID: 32097014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimetallic nanoparticles for arsenic detection.
    Moghimi N; Mohapatra M; Leung KT
    Anal Chem; 2015 Jun; 87(11):5546-52. PubMed ID: 25938763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering genetically encoded FRET-based nanosensors for real time display of arsenic (As
    Soleja N; Manzoor O; Khan P; Mohsin M
    Sci Rep; 2019 Aug; 9(1):11240. PubMed ID: 31375744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterial-based aptamer sensors for arsenic detection.
    Mao K; Zhang H; Wang Z; Cao H; Zhang K; Li X; Yang Z
    Biosens Bioelectron; 2020 Jan; 148():111785. PubMed ID: 31689596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata.
    Su YH; McGrath SP; Zhu YG; Zhao FJ
    New Phytol; 2008; 180(2):434-441. PubMed ID: 18662326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three new arsenic hyperaccumulating ferns.
    Srivastava M; Ma LQ; Santos JA
    Sci Total Environ; 2006 Jul; 364(1-3):24-31. PubMed ID: 16371231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic uptake by Pteris vittata in a subarctic arsenic-contaminated agricultural field in Japan: An 8-year study.
    Kohda YH; Endo G; Kitajima N; Sugawara K; Chien MF; Inoue C; Miyauchi K
    Sci Total Environ; 2022 Jul; 831():154830. PubMed ID: 35346712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic Toxicity: An Arsenic-Hyperaccumulating Fern Uses a Bacterial-like Tolerance Mechanism.
    Gadd GM
    Curr Biol; 2019 Jun; 29(12):R580-R582. PubMed ID: 31211979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic accumulation pattern in 12 Indian ferns and assessing the potential of Adiantum capillus-veneris, in comparison to Pteris vittata, as arsenic hyperaccumulator.
    Singh N; Raj A; Khare PB; Tripathi RD; Jamil S
    Bioresour Technol; 2010 Dec; 101(23):8960-8. PubMed ID: 20655204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.