These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 33241682)

  • 1. Hourly Power Grid Variations, Electric Vehicle Charging Patterns, and Operating Emissions.
    Miller I; Arbabzadeh M; Gençer E
    Environ Sci Technol; 2020 Dec; 54(24):16071-16085. PubMed ID: 33241682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marginal Greenhouse Gas Emissions of Ontario's Electricity System and the Implications of Electric Vehicle Charging.
    Gai Y; Wang A; Pereira L; Hatzopoulou M; Posen ID
    Environ Sci Technol; 2019 Jul; 53(13):7903-7912. PubMed ID: 31244061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charging Strategies to Minimize Greenhouse Gas Emissions of Electrified Delivery Vehicles.
    Woody M; Vaishnav P; Craig MT; Lewis GM; Keoleian GA
    Environ Sci Technol; 2021 Jul; 55(14):10108-10120. PubMed ID: 34240846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light electric vehicle charging strategy for low impact on the grid.
    Bastida-Molina P; Hurtado-Pérez E; Pérez-Navarro Á; Alfonso-Solar D
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):18790-18806. PubMed ID: 32333351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential Climate Impact Variations Due to Fueling Behavior of Plug-in Hybrid Vehicle Owners in the US.
    Wolfram P; Hertwich EG
    Environ Sci Technol; 2021 Jan; 55(1):65-72. PubMed ID: 33327721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.
    Tamayao MA; Michalek JJ; Hendrickson C; Azevedo IM
    Environ Sci Technol; 2015 Jul; 49(14):8844-55. PubMed ID: 26125323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year.
    Choi DG; Kreikebaum F; Thomas VM; Divan D
    Environ Sci Technol; 2013 Sep; 47(18):10703-7. PubMed ID: 23875888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.
    Shen W; Han W; Wallington TJ
    Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis.
    Zheng Y; Li S; Xu S
    PLoS One; 2019; 14(9):e0222448. PubMed ID: 31525217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of regular and smart grids with PV for Electrification of an academic campus with EV charging.
    Rehman S; Mohammed AB; Alhems L; Alsulaiman F
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77593-77604. PubMed ID: 37261683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing the life cycle environmental impact of electric vehicles through emissions-responsive charging.
    Tang Y; Cockerill TT; Pimm AJ; Yuan X
    iScience; 2021 Dec; 24(12):103499. PubMed ID: 34927031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective.
    Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J
    Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.
    Sioshansi R; Denholm P
    Environ Sci Technol; 2009 Feb; 43(4):1199-204. PubMed ID: 19320180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental implication of electric vehicles in China.
    Huo H; Zhang Q; Wang MQ; Streets DG; He K
    Environ Sci Technol; 2010 Jul; 44(13):4856-61. PubMed ID: 20496930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scenario-based approach to predict energy demand and carbon emission of electric vehicles on the electric grid.
    Cheung WM
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77300-77310. PubMed ID: 35676573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy, Emissions, and Cost Impacts of Charging Price Strategies for Electric Vehicles.
    Li X; Jenn A
    Environ Sci Technol; 2022 May; 56(9):5724-5733. PubMed ID: 35418227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.