BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 33241856)

  • 1. Automated magnetic resonance image segmentation of the anterior cruciate ligament.
    Flannery SW; Kiapour AM; Edgar DJ; Murray MM; Fleming BC
    J Orthop Res; 2021 Apr; 39(4):831-840. PubMed ID: 33241856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transfer learning approach for automatic segmentation of the surgically treated anterior cruciate ligament.
    Flannery SW; Kiapour AM; Edgar DJ; Murray MM; Beveridge JE; Fleming BC
    J Orthop Res; 2022 Jan; 40(1):277-284. PubMed ID: 33458865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated segmentation of the healed anterior cruciate ligament from T
    Flannery SW; Barnes DA; Costa MQ; Menghini D; Kiapour AM; Walsh EG; Bear Trial Team ; Kramer DE; Murray MM; Fleming BC
    J Orthop Res; 2023 Mar; 41(3):649-656. PubMed ID: 35634860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Knee MR Images Segmentation of Anterior Cruciate Ligament Tears.
    Awan MJ; Rahim MSM; Salim N; Rehman A; Garcia-Zapirain B
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
    Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G
    Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.
    Norman B; Pedoia V; Majumdar S
    Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-to-end deep learning model for segmentation and severity staging of anterior cruciate ligament injuries from MRI.
    Dung NT; Thuan NH; Van Dung T; Van Nho L; Tri NM; Vy VPT; Hoang LN; Phat NT; Chuong DA; Dang LH
    Diagn Interv Imaging; 2023 Mar; 104(3):133-141. PubMed ID: 36328943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated segmentation of magnetic resonance bone marrow signal: a feasibility study.
    von Brandis E; Jenssen HB; Avenarius DFM; Bjørnerud A; Flatø B; Tomterstad AH; Lilleby V; Rosendahl K; Sakinis T; Zadig PKK; Müller LO
    Pediatr Radiol; 2022 May; 52(6):1104-1114. PubMed ID: 35107593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard.
    Zhang L; Li M; Zhou Y; Lu G; Zhou Q
    J Magn Reson Imaging; 2020 Dec; 52(6):1745-1752. PubMed ID: 32715584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning.
    Byra M; Wu M; Zhang X; Jang H; Ma YJ; Chang EY; Shah S; Du J
    Magn Reson Med; 2020 Mar; 83(3):1109-1122. PubMed ID: 31535731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects.
    Pedoia V; Norman B; Mehany SN; Bucknor MD; Link TM; Majumdar S
    J Magn Reson Imaging; 2019 Feb; 49(2):400-410. PubMed ID: 30306701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Automated Abdominal Organ Segmentation in the UK Biobank and German National Cohort Magnetic Resonance Imaging Studies.
    Kart T; Fischer M; Küstner T; Hepp T; Bamberg F; Winzeck S; Glocker B; Rueckert D; Gatidis S
    Invest Radiol; 2021 Jun; 56(6):401-408. PubMed ID: 33930003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI.
    Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C
    Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression.
    Tan LK; McLaughlin RA; Lim E; Abdul Aziz YF; Liew YM
    J Magn Reson Imaging; 2018 Jul; 48(1):140-152. PubMed ID: 29316024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CAST: A multi-scale convolutional neural network based automated hippocampal subfield segmentation toolbox.
    Yang Z; Zhuang X; Mishra V; Sreenivasan K; Cordes D
    Neuroimage; 2020 Sep; 218():116947. PubMed ID: 32474081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully automated left atrium segmentation from anatomical cine long-axis MRI sequences using deep convolutional neural network with unscented Kalman filter.
    Zhang X; Noga M; Martin DG; Punithakumar K
    Med Image Anal; 2021 Feb; 68():101916. PubMed ID: 33285484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of the human supraclavicular fat depot via deep neural network in water-fat separated magnetic resonance images.
    Zhao Y; Tang C; Cui B; Somasundaram A; Raspe J; Hu X; Holzapfel C; Junker D; Hauner H; Menze B; Wu M; Karampinos D
    Quant Imaging Med Surg; 2023 Jul; 13(7):4699-4715. PubMed ID: 37456284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.