BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 33242074)

  • 1. Advances and opportunities in image analysis of bacterial cells and communities.
    Jeckel H; Drescher K
    FEMS Microbiol Rev; 2021 Aug; 45(4):. PubMed ID: 33242074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BCM3D 2.0: accurate segmentation of single bacterial cells in dense biofilms using computationally generated intermediate image representations.
    Zhang J; Wang Y; Donarski ED; Toma TT; Miles MT; Acton ST; Gahlmann A
    NPJ Biofilms Microbiomes; 2022 Dec; 8(1):99. PubMed ID: 36529755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images.
    Mela CA; Liu Y
    BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytics and visualization tools to characterize single-cell stochasticity using bacterial single-cell movie cytometry data.
    Balomenos AD; Stefanou V; Manolakos ES
    BMC Bioinformatics; 2021 Oct; 22(1):531. PubMed ID: 34715773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convolutional Neural Networks for Classifying Chromatin Morphology in Live-Cell Imaging.
    Ulicna K; Ho LTL; Soelistyo CJ; Day NJ; Lowe AR
    Methods Mol Biol; 2022; 2476():17-30. PubMed ID: 35635694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image analysis driven single-cell analytics for systems microbiology.
    Balomenos AD; Tsakanikas P; Aspridou Z; Tampakaki AP; Koutsoumanis KP; Manolakos ES
    BMC Syst Biol; 2017 Apr; 11(1):43. PubMed ID: 28376782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative image analysis of microbial communities with BiofilmQ.
    Hartmann R; Jeckel H; Jelli E; Singh PK; Vaidya S; Bayer M; Rode DKH; Vidakovic L; Díaz-Pascual F; Fong JCN; Dragoš A; Lamprecht O; Thöming JG; Netter N; Häussler S; Nadell CD; Sourjik V; Kovács ÁT; Yildiz FH; Drescher K
    Nat Microbiol; 2021 Feb; 6(2):151-156. PubMed ID: 33398098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates.
    Jelli E; Ohmura T; Netter N; Abt M; Jiménez-Siebert E; Neuhaus K; Rode DKH; Nadell CD; Drescher K
    Mol Microbiol; 2023 Jun; 119(6):659-676. PubMed ID: 37066636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning image-based spatial transformations via convolutional neural networks: A review.
    Tustison NJ; Avants BB; Gee JC
    Magn Reson Imaging; 2019 Dec; 64():142-153. PubMed ID: 31200026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer Vision-Based Image Analysis of Bacteria.
    Danielsen J; Nordenfelt P
    Methods Mol Biol; 2017; 1535():161-172. PubMed ID: 27914078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic identification of crossovers in cryo-EM images of murine amyloid protein A fibrils with machine learning.
    Weber M; Bäuerle A; Schmidt M; Neumann M; Fändrich M; Ropinski T; Schmidt V
    J Microsc; 2020 Jan; 277(1):12-22. PubMed ID: 31859366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning and image analysis in vascular surgery.
    Tomihama RT; Dass S; Chen S; Kiang SC
    Semin Vasc Surg; 2023 Sep; 36(3):413-418. PubMed ID: 37863613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Micrographs of Bacteria (SyMBac) allows accurate segmentation of bacterial cells using deep neural networks.
    Hardo G; Noka M; Bakshi S
    BMC Biol; 2022 Nov; 20(1):263. PubMed ID: 36447211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A convolutional neural network for segmentation of yeast cells without manual training annotations.
    Kruitbosch HT; Mzayek Y; Omlor S; Guerra P; Milias-Argeitis A
    Bioinformatics; 2022 Feb; 38(5):1427-1433. PubMed ID: 34893817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks.
    Chen J; Li Y; Luna LP; Chung HW; Rowe SP; Du Y; Solnes LB; Frey EC
    Med Phys; 2021 Jul; 48(7):3860-3877. PubMed ID: 33905560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Software for segmenting and quantifying calcium signals using multi-scale generative adversarial networks.
    Moghnieh H; Kamran SA; Hossain KF; Kuol N; Riar S; Bartlett A; Tavakkoli A; Baker SA
    STAR Protoc; 2022 Dec; 3(4):101852. PubMed ID: 36595928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images.
    Alaskar H; Hussain A; Al-Aseem N; Liatsis P; Al-Jumeily D
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30871162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training a deep learning model for single-cell segmentation without manual annotation.
    Din NU; Yu J
    Sci Rep; 2021 Dec; 11(1):23995. PubMed ID: 34907213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.