These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 33242105)

  • 1. Modeling different types of diabetes using human pluripotent stem cells.
    Abdelalim EM
    Cell Mol Life Sci; 2021 Mar; 78(6):2459-2483. PubMed ID: 33242105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human pluripotent stem cell based islet models for diabetes research.
    Balboa D; Otonkoski T
    Best Pract Res Clin Endocrinol Metab; 2015 Dec; 29(6):899-909. PubMed ID: 26696518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances and potential applications of human pluripotent stem cell-derived pancreatic β cells.
    Zhou Z; Ma X; Zhu S
    Acta Biochim Biophys Sin (Shanghai); 2020 Jul; 52(7):708-715. PubMed ID: 32445468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monogenic Diabetes Modeling:
    Burgos JI; Vallier L; Rodríguez-Seguí SA
    Front Endocrinol (Lausanne); 2021; 12():692596. PubMed ID: 34295307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Precision Medicine with Human Pluripotent Stem Cells for Diabetes.
    Memon B; Abdelalim EM
    Stem Cells Transl Med; 2022 Jul; 11(7):704-714. PubMed ID: 35640144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes.
    Zhu Z; Li QV; Lee K; Rosen BP; González F; Soh CL; Huangfu D
    Cell Stem Cell; 2016 Jun; 18(6):755-768. PubMed ID: 27133796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem cell-based multi-tissue platforms to model human autoimmune diabetes.
    Leavens KF; Alvarez-Dominguez JR; Vo LT; Russ HA; Parent AV
    Mol Metab; 2022 Dec; 66():101610. PubMed ID: 36209784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers.
    George MN; Leavens KF; Gadue P
    Front Endocrinol (Lausanne); 2021; 12():682625. PubMed ID: 34149620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microporous scaffolds support assembly and differentiation of pancreatic progenitors into β-cell clusters.
    Youngblood RL; Sampson JP; Lebioda KR; Shea LD
    Acta Biomater; 2019 Sep; 96():111-122. PubMed ID: 31247380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-cell mitochondria in diabetes mellitus: a missing puzzle piece in the generation of hPSC-derived pancreatic β-cells?
    Diane A; Al-Shukri NA; Bin Abdul Mu-U-Min R; Al-Siddiqi HH
    J Transl Med; 2022 Apr; 20(1):163. PubMed ID: 35397560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to make a functional β-cell.
    Pagliuca FW; Melton DA
    Development; 2013 Jun; 140(12):2472-83. PubMed ID: 23715541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development.
    Millette K; Georgia S
    Curr Diab Rep; 2017 Oct; 17(11):116. PubMed ID: 28980194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of pluripotent stem cells for diabetes therapy.
    Schroeder IS
    Curr Diab Rep; 2012 Oct; 12(5):490-8. PubMed ID: 22753002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tankyrase inhibition promotes endocrine commitment of hPSC-derived pancreatic progenitors.
    Poon F; Sambathkumar R; Korytnikov R; Aghazadeh Y; Oakie A; Misra PS; Sarangi F; Nostro MC
    Nat Commun; 2024 Oct; 15(1):8754. PubMed ID: 39384787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An arduous journey from human pluripotent stem cells to functional pancreatic β cells.
    Loo LSW; Lau HH; Jasmen JB; Lim CS; Teo AKK
    Diabetes Obes Metab; 2018 Jan; 20(1):3-13. PubMed ID: 28474496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration.
    Ma X; Zhu S
    Acta Biochim Biophys Sin (Shanghai); 2017 Apr; 49(4):289-301. PubMed ID: 28338772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes.
    Balboa D; Iworima DG; Kieffer TJ
    Front Endocrinol (Lausanne); 2021; 12():642152. PubMed ID: 33828531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in the Generation of Functional β-cells from Induced Pluripotent Stem Cells As a Cure for Diabetes Mellitus.
    Kalra K; Chandrabose ST; Ramasamy TS; Kasim NHBA
    Curr Drug Targets; 2018; 19(13):1463-1477. PubMed ID: 29874998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration.
    Zhu Y; Liu Q; Zhou Z; Ikeda Y
    Stem Cell Res Ther; 2017 Nov; 8(1):240. PubMed ID: 29096722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical combinations potentiate human pluripotent stem cell-derived 3D pancreatic progenitor clusters toward functional β cells.
    Liu H; Li R; Liao HK; Min Z; Wang C; Yu Y; Shi L; Dan J; Hayek A; Martinez Martinez L; Nuñez Delicado E; Izpisua Belmonte JC
    Nat Commun; 2021 Jun; 12(1):3330. PubMed ID: 34099664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.