These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33242116)

  • 1. Density-based clustering of static and dynamic functional MRI connectivity features obtained from subjects with cognitive impairment.
    Rangaprakash D; Odemuyiwa T; Narayana Dutt D; Deshpande G;
    Brain Inform; 2020 Nov; 7(1):19. PubMed ID: 33242116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MALINI (Machine Learning in NeuroImaging): A MATLAB toolbox for aiding clinical diagnostics using resting-state fMRI data.
    Lanka P; Rangaprakash D; Gotoor SSR; Dretsch MN; Katz JS; Denney TS; Deshpande G
    Data Brief; 2020 Apr; 29():105213. PubMed ID: 32090157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease.
    Forouzannezhad P; Abbaspour A; Fang C; Cabrerizo M; Loewenstein D; Duara R; Adjouadi M
    J Neurosci Methods; 2019 Apr; 317():121-140. PubMed ID: 30593787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Correspondence of Clinical Diagnostic Grouping With Underlying Neurobiological and Phenotypic Clusters Using Unsupervised Machine Learning.
    Zhao X; Rangaprakash D; Yuan B; Denney TS; Katz JS; Dretsch MN; Deshpande G
    Front Appl Math Stat; 2018 Sep; 4():. PubMed ID: 30393630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal Data Fusion of Deep Learning and Dynamic Functional Connectivity Features to Predict Alzheimer's Disease Progression
    Abrol A; Fu Z; Du Y; Calhoun VD
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4409-4413. PubMed ID: 31946844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection.
    Iqbal T; Elahi A; Wijns W; Shahzad A
    Front Med Technol; 2022; 4():782756. PubMed ID: 35359827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep multi-kernel auto-encoder network for clustering brain functional connectivity data.
    Lu H; Liu S; Wei H; Chen C; Geng X
    Neural Netw; 2021 Mar; 135():148-157. PubMed ID: 33388506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Level Clustering of Dynamic Directional Brain Network Patterns and Their Behavioral Relevance.
    Deshpande G; Jia H
    Front Neurosci; 2019; 13():1448. PubMed ID: 32116487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying neuropsychiatric disorders using unsupervised clustering methods: Data and code.
    Zhao X; Rangaprakash D; Denney TS; Katz JS; Dretsch MN; Deshpande G
    Data Brief; 2019 Feb; 22():570-573. PubMed ID: 30627610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel joint HCPMMP method for automatically classifying Alzheimer's and different stage MCI patients.
    Sheng J; Wang B; Zhang Q; Liu Q; Ma Y; Liu W; Shao M; Chen B
    Behav Brain Res; 2019 Jun; 365():210-221. PubMed ID: 30836158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Migraine Using Static Functional Connectivity Strength and Dynamic Functional Connectome Patterns: A Resting-State fMRI Study.
    Nie W; Zeng W; Yang J; Zhao L; Shi Y
    Brain Sci; 2023 Mar; 13(4):. PubMed ID: 37190561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying disease foci from static and dynamic effective connectivity networks: Illustration in soldiers with trauma.
    Rangaprakash D; Dretsch MN; Venkataraman A; Katz JS; Denney TS; Deshpande G
    Hum Brain Mapp; 2018 Jan; 39(1):264-287. PubMed ID: 29058357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel semi-supervised multi-view clustering framework for screening Parkinson's disease.
    Zhang XB; Zhai DH; Yang Y; Zhang YL; Wang CL
    Math Biosci Eng; 2020 Apr; 17(4):3395-3411. PubMed ID: 32987535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering fMRI data with a robust unsupervised learning algorithm for neuroscience data mining.
    Aljobouri HK; Jaber HA; Koçak OM; Algin O; Çankaya I
    J Neurosci Methods; 2018 Apr; 299():45-54. PubMed ID: 29471065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effective density-based clustering and dynamic maintenance framework for evolving medical data streams.
    Al-Shammari A; Zhou R; Naseriparsaa M; Liu C
    Int J Med Inform; 2019 Jun; 126():176-186. PubMed ID: 31029259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization and unsupervised predictive clustering of high-dimensional multimodal neuroimaging data.
    Mwangi B; Soares JC; Hasan KM
    J Neurosci Methods; 2014 Oct; 236():19-25. PubMed ID: 25117552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.
    Kamali T; Stashuk D
    Artif Intell Med; 2016 Oct; 73():14-22. PubMed ID: 27926378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset.
    Guo H; Liu L; Chen J; Xu Y; Jie X
    Front Neurosci; 2017; 11():639. PubMed ID: 29249926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks.
    Li F; Liu M;
    Comput Med Imaging Graph; 2018 Dec; 70():101-110. PubMed ID: 30340094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.