These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 33243144)

  • 21. Carotenoid Production in Oleaginous Yeasts.
    Kanamoto H; Nakamura K; Misawa N
    Adv Exp Med Biol; 2021; 1261():153-163. PubMed ID: 33783737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carotenoid Biosynthesis: Genome-Wide Profiling, Pathway Identification in
    Bo S; Ni X; Guo J; Liu Z; Wang X; Sheng Y; Zhang G; Yang J
    Front Nutr; 2022; 9():918240. PubMed ID: 35782944
    [No Abstract]   [Full Text] [Related]  

  • 23. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation.
    Zhang Z; Zhang X; Tan T
    Bioresour Technol; 2014 Apr; 157():149-53. PubMed ID: 24549236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Whole-genome sequence and characterization of a marine red yeast, Rhodosporidium sphaerocarpum GDMCC 60679, featuring the assimilation of ammonia nitrogen.
    Pan C; Yin J; Ma B; Wen J; Luo P
    J Biosci Bioeng; 2024 Feb; 137(2):85-93. PubMed ID: 38155026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana.
    Chen Y; Cui Q; Xu Y; Yang S; Gao M; Wang Y
    Mol Genet Genomics; 2015 Aug; 290(4):1605-13. PubMed ID: 25754996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromosome-level genome assembly and transcriptome-based annotation of the oleaginous yeast Rhodotorula toruloides CBS 14.
    Martín-Hernández GC; Müller B; Chmielarz M; Brandt C; Hölzer M; Viehweger A; Passoth V
    Genomics; 2021 Nov; 113(6):4022-4027. PubMed ID: 34648882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic-solvent-free extraction of carotenoids from yeast Rhodotorula glutinis by application of ultrasound under pressure.
    Martínez JM; Delso C; Aguilar DE; Álvarez I; Raso J
    Ultrason Sonochem; 2020 Mar; 61():104833. PubMed ID: 31669840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Whole genome sequencing of
    Gan HM; Thomas BN; Cavanaugh NT; Morales GH; Mayers AN; Savka MA; Hudson AO
    PeerJ; 2017; 5():e4030. PubMed ID: 29158974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhodotorula glutinis T13 as a potential source of microbial lipids for biodiesel generation.
    Maza DD; Viñarta SC; García-Ríos E; Guillamón JM; Aybar MJ
    J Biotechnol; 2021 Apr; 331():14-18. PubMed ID: 33711359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa.
    Landolfo S; Ianiri G; Camiolo S; Porceddu A; Mulas G; Chessa R; Zara G; Mannazzu I
    Microbiology (Reading); 2018 Jan; 164(1):78-87. PubMed ID: 29219805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup.
    Buzzini P
    J Appl Microbiol; 2001 May; 90(5):843-7. PubMed ID: 11348447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications.
    Park YK; Nicaud JM; Ledesma-Amaro R
    Trends Biotechnol; 2018 Mar; 36(3):304-317. PubMed ID: 29132754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].
    Lin Z; Liu H; Zhang J; Wang G
    Sheng Wu Gong Cheng Xue Bao; 2016 Mar; 32(3):339-46. PubMed ID: 27349116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of carotenoid production from hyper-producing Rhodotorula glutinis mutant 32 by a factorial approach.
    Bhosale P; Gadre RV
    Lett Appl Microbiol; 2001 Jul; 33(1):12-6. PubMed ID: 11442807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated Transcriptomics and Metabolomics Analysis Reveal the Regulatory Mechanisms Underlying Sodium Butyrate-Induced Carotenoid Biosynthesis in
    Huang X; Fan J; Guo C; Chen Y; Qiu J; Zhang Q
    J Fungi (Basel); 2024 Apr; 10(5):. PubMed ID: 38786675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis.
    Li Z; Sun H; Mo X; Li X; Xu B; Tian P
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4927-36. PubMed ID: 23179623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oleaginous yeasts for biochemicals, biofuels and food from lignocellulose-hydrolysate and crude glycerol.
    Passoth V; Brandenburg J; Chmielarz M; Martín-Hernández GC; Nagaraj Y; Müller B; Blomqvist J
    Yeast; 2023 Aug; 40(8):290-302. PubMed ID: 36597618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis].
    Davoli P; Mierau V; Weber RW
    Prikl Biokhim Mikrobiol; 2004; 40(4):460-5. PubMed ID: 15455720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome Sequence of the Oleaginous Yeast Rhodotorula glutinis ATCC 204091.
    Paul D; Magbanua Z; Arick M; French T; Bridges SM; Burgess SC; Lawrence ML
    Genome Announc; 2014 Feb; 2(1):. PubMed ID: 24526636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on the fermentation effect of
    Xu X; Liu W; Niu H; Hua M; Su Y; Miao X; Chi Y; Xu H; Wang J; Sun M; Li D
    Front Nutr; 2023; 10():1125720. PubMed ID: 36908914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.