These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 33243144)

  • 41. [Raman tweezers-based analysis of carotenoid synthesis in Rhodotorula glutinis].
    Yuan YF; Tao ZH; Liu JX; Wang GW; Li YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):1001-5. PubMed ID: 21714247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative evaluation of different carbon sources supply on simultaneous production of lipid and carotene of Rhodotorula glutinis with irradiation and the assessment of key gene transcription.
    Gong G; Liu L; Zhang X; Tan T
    Bioresour Technol; 2019 Sep; 288():121559. PubMed ID: 31152958
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis.
    Easterling ER; French WT; Hernandez R; Licha M
    Bioresour Technol; 2009 Jan; 100(1):356-61. PubMed ID: 18614357
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Systematic development of a two-stage fed-batch process for lipid accumulation in Rhodotorula glutinis.
    Lorenz E; Runge D; Marbà-Ardébol AM; Schmacht M; Stahl U; Senz M
    J Biotechnol; 2017 Mar; 246():4-15. PubMed ID: 28213136
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diversity of Red Yeasts in Various Regions and Environments of Poland and Biotechnological Potential of the Isolated Strains.
    Kot AM; Sęk W; Kieliszek M; Błażejak S; Pobiega K; Brzezińska R
    Appl Biochem Biotechnol; 2024 Jun; 196(6):3274-3316. PubMed ID: 37646889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous Lipid and Carotenoid Production via
    Sriphuttha C; Boontawan P; Boonyanan P; Ketudat-Cairns M; Boontawan A
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139021
    [No Abstract]   [Full Text] [Related]  

  • 47. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation.
    Sakaki H; Nakanishi T; Tada A; Miki W; Komemushi S
    J Biosci Bioeng; 2001; 92(3):294-7. PubMed ID: 16233099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rhodotorula sp.-based biorefinery: a source of valuable biomolecules.
    Mussagy CU; Ribeiro HF; Santos-Ebinuma VC; Schuur B; Pereira JFB
    Appl Microbiol Biotechnol; 2022 Nov; 106(22):7431-7447. PubMed ID: 36255447
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock.
    Cheirsilp B; Suwannarat W; Niyomdecha R
    N Biotechnol; 2011 Jul; 28(4):362-8. PubMed ID: 21255692
    [TBL] [Abstract][Full Text] [Related]  

  • 50.
    Li Z; Li C; Cheng P; Yu G
    Heliyon; 2022 Nov; 8(11):e11505. PubMed ID: 36419653
    [TBL] [Abstract][Full Text] [Related]  

  • 51. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant.
    Cutzu R; Coi A; Rosso F; Bardi L; Ciani M; Budroni M; Zara G; Zara S; Mannazzu I
    World J Microbiol Biotechnol; 2013 Jun; 29(6):1009-17. PubMed ID: 23355137
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioprospecting microbes for single-cell oil production from starchy wastes.
    Chaturvedi S; Kumari A; Nain L; Khare SK
    Prep Biochem Biotechnol; 2018 Mar; 48(3):296-302. PubMed ID: 29424627
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved Carotenoid Productivity and COD Removal Efficiency by Co-culture of Rhodotorula glutinis and Chlorella vulgaris Using Starch Wastewaters as Raw Material.
    Zhang Z; Pang Z; Xu S; Wei T; Song L; Wang G; Zhang J; Yang X
    Appl Biochem Biotechnol; 2019 Sep; 189(1):193-205. PubMed ID: 30969398
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Effects of furfural on the growth and lipid production of oleaginous yeast Rhodotorula glutinis].
    Yong Z; Zhang X; Tan T
    Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1484-91. PubMed ID: 26964337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of several waste substrates for carotenoid-rich yeast biomass production.
    Marova I; Carnecka M; Halienova A; Certik M; Dvorakova T; Haronikova A
    J Environ Manage; 2012 Mar; 95 Suppl():S338-42. PubMed ID: 21741756
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diversity investigation of cultivable yeasts associated with honeycombs and identification of a novel Rhodotorula toruloides strain with the robust concomitant production of lipid and carotenoid.
    Xue SJ; Li XC; Huang X; Liu J; Li Y; Zhang XT; Zhang JY
    Bioresour Technol; 2023 Feb; 370():128573. PubMed ID: 36603754
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Formation of carotenoids by rhodotorula glutinis in whey ultrafiltrate.
    Frengova G; Simova E; Pavlova K; Beshkova D; Grigorova D
    Biotechnol Bioeng; 1994 Oct; 44(8):888-94. PubMed ID: 18618906
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of irradiation and microfiltration on the cells growing and total lipids production in the cultivation of Rhodotorula glutinis.
    Yen HW; Yang YC
    Bioresour Technol; 2012 Mar; 107():539-41. PubMed ID: 22244906
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cloning of a LEU gene and an ARS site of Rhodotorula glutinis.
    Ho YR; Chang MC
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1988 Feb; 21(1):1-8. PubMed ID: 3061748
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis.
    Rani SH; Saha S; Rajasekharan R
    Microbiology (Reading); 2013 Jan; 159(Pt 1):155-166. PubMed ID: 23103975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.