These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 33243241)
1. Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose. Yin H; Hu T; Zhuang Y; Liu T Microb Cell Fact; 2020 Nov; 19(1):218. PubMed ID: 33243241 [TBL] [Abstract][Full Text] [Related]
2. De novo biosynthesis of Gastrodin in Escherichia coli. Bai Y; Yin H; Bi H; Zhuang Y; Liu T; Ma Y Metab Eng; 2016 May; 35():138-147. PubMed ID: 26804288 [TBL] [Abstract][Full Text] [Related]
3. Enhancing Gastrodin Production in Wu Y; Li S; Sun B; Guo J; Zheng M; Li A ACS Synth Biol; 2024 Apr; 13(4):1332-1342. PubMed ID: 38563122 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach. Liu Z; Zhang X; Lei D; Qiao B; Zhao GR Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467 [TBL] [Abstract][Full Text] [Related]
5. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Hansen EH; Møller BL; Kock GR; Bünner CM; Kristensen C; Jensen OR; Okkels FT; Olsen CE; Motawia MS; Hansen J Appl Environ Microbiol; 2009 May; 75(9):2765-74. PubMed ID: 19286778 [TBL] [Abstract][Full Text] [Related]
6. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture. Yuan SF; Yi X; Johnston TG; Alper HS Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999 [TBL] [Abstract][Full Text] [Related]
7. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose. Jiang J; Yin H; Wang S; Zhuang Y; Liu S; Liu T; Ma Y J Agric Food Chem; 2018 May; 66(17):4431-4438. PubMed ID: 29671328 [TBL] [Abstract][Full Text] [Related]
8. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae. Gottardi M; Knudsen JD; Prado L; Oreb M; Branduardi P; Boles E Appl Microbiol Biotechnol; 2017 Jun; 101(12):4883-4893. PubMed ID: 28353001 [TBL] [Abstract][Full Text] [Related]
9. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819 [TBL] [Abstract][Full Text] [Related]
10. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106 [TBL] [Abstract][Full Text] [Related]
11. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Wang H; Yang Y; Lin L; Zhou W; Liu M; Cheng K; Wang W Microb Cell Fact; 2016 Aug; 15(1):134. PubMed ID: 27491546 [TBL] [Abstract][Full Text] [Related]
12. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Rodriguez A; Kildegaard KR; Li M; Borodina I; Nielsen J Metab Eng; 2015 Sep; 31():181-8. PubMed ID: 26292030 [TBL] [Abstract][Full Text] [Related]
13. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli. Okai N; Miyoshi T; Takeshima Y; Kuwahara H; Ogino C; Kondo A Appl Microbiol Biotechnol; 2016 Jan; 100(1):135-45. PubMed ID: 26392137 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
15. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753 [TBL] [Abstract][Full Text] [Related]
16. Metabolic Engineering of Xiao F; Lian J; Tu S; Xie L; Li J; Zhang F; Linhardt RJ; Huang H; Zhong W ACS Synth Biol; 2022 Feb; 11(2):800-811. PubMed ID: 35107250 [TBL] [Abstract][Full Text] [Related]
17. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Saccharomyces cerevisiae for high-level production of (+)-ambrein from glucose. Lin C; Zhang X; Ji Z; Fan B; Chen Y; Wu Y; Gan Y; Li Z; Shang Y; Duan L; Wang F Biotechnol Lett; 2024 Aug; 46(4):615-626. PubMed ID: 38884886 [TBL] [Abstract][Full Text] [Related]
19. High titer production of gastrodin enabled by systematic refactoring of yeast genome and an antisense-transcriptional regulation toolkit. Gu Y; Jiang Y; Li C; Zhu J; Lu X; Ge J; Hu M; Deng J; Ma J; Yang Z; Sun X; Xue F; Du G; Xu P; Huang H Metab Eng; 2024 Mar; 82():250-261. PubMed ID: 38428728 [TBL] [Abstract][Full Text] [Related]
20. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]