These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 33243241)
61. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Xu L; Wang D; Chen J; Li B; Li Q; Liu P; Qin Y; Dai Z; Fan F; Zhang X Metab Eng; 2022 Mar; 70():115-128. PubMed ID: 35085779 [TBL] [Abstract][Full Text] [Related]
62. Metabolic engineering of Saccharomyces cerevisiae for chelerythrine biosynthesis. Zhu J; Zhang K; He Y; Zhang Q; Ran Y; Tan Z; Cui L; Feng Y Microb Cell Fact; 2024 Jun; 23(1):183. PubMed ID: 38902758 [TBL] [Abstract][Full Text] [Related]
63. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. d'Espaux L; Ghosh A; Runguphan W; Wehrs M; Xu F; Konzock O; Dev I; Nhan M; Gin J; Reider Apel A; Petzold CJ; Singh S; Simmons BA; Mukhopadhyay A; García Martín H; Keasling JD Metab Eng; 2017 Jul; 42():115-125. PubMed ID: 28606738 [TBL] [Abstract][Full Text] [Related]
64. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
66. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Kim SJ; Seo SO; Jin YS; Seo JH Bioresour Technol; 2013 Oct; 146():274-281. PubMed ID: 23941711 [TBL] [Abstract][Full Text] [Related]
67. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Zha J; Zang Y; Mattozzi M; Plassmeier J; Gupta M; Wu X; Clarkson S; Koffas MAG Microb Cell Fact; 2018 Sep; 17(1):143. PubMed ID: 30217197 [TBL] [Abstract][Full Text] [Related]
68. A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield. Yang P; Liu W; Cheng X; Wang J; Wang Q; Qi Q Appl Environ Microbiol; 2016 May; 82(9):2709-2717. PubMed ID: 26921424 [TBL] [Abstract][Full Text] [Related]
69. [Recent advances in metabolic engineering of microorganisms for production of tyrosol and its derivatives]. Liu Y; Fu C; Zhang X; Gu B; Hu H; Yang R; Lyu X Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2604-2625. PubMed ID: 39174472 [TBL] [Abstract][Full Text] [Related]
70. [Metabolic engineering of Saccharomyces cerevisiae for production of glucaric acid]. Gong X; Liu Y; Wang C; Li J; Kang Z Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):228-236. PubMed ID: 28956379 [TBL] [Abstract][Full Text] [Related]
71. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae. Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870 [TBL] [Abstract][Full Text] [Related]
72. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Novy V; Brunner B; Nidetzky B Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896 [TBL] [Abstract][Full Text] [Related]
73. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
74. Enzyme and Pathway Engineering for Improved Betanin Production in Li J; Wang L; Zhang N; Cheng S; Wu Y; Zhao GR ACS Synth Biol; 2024 Jun; 13(6):1916-1924. PubMed ID: 38861476 [TBL] [Abstract][Full Text] [Related]
75. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Cardenas J; Da Silva NA Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250 [TBL] [Abstract][Full Text] [Related]
76. Comprehensive Engineering Strategies for Heterologous Production of Zealexin A1 in Li Y; Li R; Ge J; Nie S; Chen R; Yan X; Qiao J J Agric Food Chem; 2024 Aug; 72(34):19071-19080. PubMed ID: 39140182 [TBL] [Abstract][Full Text] [Related]
77. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related]
78. Metabolic Engineering of Escherichia coli for Production of 2-Phenylethanol and 2-Phenylethyl Acetate from Glucose. Guo D; Zhang L; Kong S; Liu Z; Li X; Pan H J Agric Food Chem; 2018 Jun; 66(23):5886-5891. PubMed ID: 29808680 [TBL] [Abstract][Full Text] [Related]