BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33243428)

  • 1. Kinetic and thermodynamic insights into the inhibitory mechanism of TMG-chitotriomycin on Vibrio campbellii GH20 exo-β-N-acetylglucosaminidase.
    Morimoto Y; Takahashi S; Isoda Y; Nokami T; Fukamizo T; Suginta W; Ohnuma T
    Carbohydr Res; 2021 Jan; 499():108201. PubMed ID: 33243428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potent inhibition of a GH20 exo-β-N-acetylglucosaminidase from marine Vibrio bacteria by reaction intermediate analogues.
    Meekrathok P; Stubbs KA; Suginta W
    Int J Biol Macromol; 2018 Aug; 115():1165-1173. PubMed ID: 29730005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAG-thiazoline is a potent inhibitor of the Vibrio campbellii GH20 β-N-Acetylglucosaminidase.
    Meekrathok P; Stubbs KA; Aunkham A; Kaewmaneewat A; Kardkuntod A; Bulmer DM; van den Berg B; Suginta W
    FEBS J; 2020 Nov; 287(22):4982-4995. PubMed ID: 32145141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, evaluation, and mechanism of N,N,N-trimethyl-D-glucosamine-(1→4)-chitooligosaccharides as selective inhibitors of glycosyl hydrolase family 20 β-N-acetyl-D-hexosaminidases.
    Yang Y; Liu T; Yang Y; Wu Q; Yang Q; Yu B
    Chembiochem; 2011 Feb; 12(3):457-67. PubMed ID: 21290547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total synthesis and structural revision of TMG-chitotriomycin, a specific inhibitor of insect and fungal beta-N-acetylglucosaminidases.
    Yang Y; Li Y; Yu B
    J Am Chem Soc; 2009 Sep; 131(34):12076-7. PubMed ID: 19663423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of chitin utilization by a GH20 β-N-acetylglucosaminidase from Vibrio campbellii strain ATCC BAA-1116.
    Meekrathok P; Bürger M; Porfetye AT; Kumsaoad S; Aunkham A; Vetter IR; Suginta W
    Acta Crystallogr D Struct Biol; 2021 May; 77(Pt 5):674-689. PubMed ID: 33950022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TMG-chitotriomycin, an enzyme inhibitor specific for insect and fungal beta-N-acetylglucosaminidases, produced by actinomycete Streptomyces anulatus NBRC 13369.
    Usuki H; Nitoda T; Ichikawa M; Yamaji N; Iwashita T; Komura H; Kanzaki H
    J Am Chem Soc; 2008 Mar; 130(12):4146-52. PubMed ID: 18307344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TMG-chitotriomycin as a probe for the prediction of substrate specificity of β-N-acetylhexosaminidases.
    Shiota H; Kanzaki H; Hatanaka T; Nitoda T
    Carbohydr Res; 2013 Jun; 375():29-34. PubMed ID: 23685037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Catalytic Mechanism of Vibrio harveyi GH20 β-N-Acetylglucosaminidase by Chemical Rescue.
    Meekrathok P; Suginta W
    PLoS One; 2016; 11(2):e0149228. PubMed ID: 26870945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MS/MS fragmentation-guided search of TMG-chitooligomycins and their structure-activity relationship in specific β-N-acetylglucosaminidase inhibition.
    Usuki H; Yamamoto Y; Kumagai Y; Nitoda T; Kanzaki H; Hatanaka T
    Org Biomol Chem; 2011 Apr; 9(8):2943-51. PubMed ID: 21373681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azide anions inhibit GH-18 endochitinase and GH-20 Exo β-N-acetylglucosaminidase from the marine bacterium Vibrio harveyi.
    Sirimontree P; Fukamizo T; Suginta W
    J Biochem; 2016 Feb; 159(2):191-200. PubMed ID: 26330565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, purification, crystallization and preliminary crystallographic analysis of a GH20 β-N-acetylglucosaminidase from the marine bacterium Vibrio harveyi.
    Meekrathok P; Bürger M; Porfetye AT; Vetter IR; Suginta W
    Acta Crystallogr F Struct Biol Commun; 2015 Apr; 71(Pt 4):427-33. PubMed ID: 25849504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Analysis for Binding of 4-
    Ogata M; Fukamizo T; Ohnuma T
    Front Mol Biosci; 2021; 8():654706. PubMed ID: 34179076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A straightforward access to TMG-chitooligomycins and their evaluation as β-N-acetylhexosaminidase inhibitors.
    Halila S; Samain E; Vorgias CE; Armand S
    Carbohydr Res; 2013 Mar; 368():52-6. PubMed ID: 23333949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the structure-affinity relationships and solvation effects between OfHex1 and inhibitors using molecular dynamics simulations.
    Hu S; Dong Y; Zhao X; Zhang L
    J Mol Graph Model; 2019 Jul; 90():1-8. PubMed ID: 30939332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of three Serratia marcescens chitinases in chitin conversion are reflected in different thermodynamic signatures of allosamidin binding.
    Baban J; Fjeld S; Sakuda S; Eijsink VG; Sørlie M
    J Phys Chem B; 2010 May; 114(18):6144-9. PubMed ID: 20397673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel β-N-acetylglucosaminidases from Vibrio harveyi 650: cloning, expression, enzymatic properties, and subsite identification.
    Suginta W; Chuenark D; Mizuhara M; Fukamizo T
    BMC Biochem; 2010 Sep; 11():40. PubMed ID: 20920218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Study for the Unbinding Routes of β-
    Hu S; Zhao X; Zhang L
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30917577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel GH-20 β-N-acetylglucosaminidase inhibitors: Virtual screening, molecular docking, binding affinity, and anti-tumor activity.
    Meekrathok P; Thongsom S; Aunkham A; Kaewmaneewat A; Kitaoku Y; Choowongkomon K; Suginta W
    Int J Biol Macromol; 2020 Jan; 142():503-512. PubMed ID: 31593714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on Turbatrix aceti beta-N-acetylglucosaminidase. 2. Kinetic studies on the active site.
    Bedi GS; Shah RH; Bahl OP
    Arch Biochem Biophys; 1984 Aug; 233(1):251-9. PubMed ID: 6465898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.