These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33243449)

  • 1. Attitude-orbit coupled sliding mode tracking control for spacecraft formation with event-triggered transmission.
    Fan R; Chen X; Liu M; Cao X
    ISA Trans; 2022 May; 124():338-348. PubMed ID: 33243449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attitude-Orbit Coupled Control of Gravitational Wave Detection Spacecraft with Communication Delays.
    Zhang Y; Liu Y; Yang J; Lu Z; Zhang J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fixed-time regulation of spacecraft orbit and attitude coordination with optimal actuation allocation using dual quaternion.
    Sun L; Huang Y; Fei H; Xiao B; Yeatman EM; Montazeri A; Wang Z
    Front Robot AI; 2023; 10():1138115. PubMed ID: 36866152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network.
    An-Min Zou ; Kumar KD; Zeng-Guang Hou ; Xi Liu
    IEEE Trans Syst Man Cybern B Cybern; 2011 Aug; 41(4):950-63. PubMed ID: 21266316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-time velocity-free relative position coordinated control of spacecraft formation with dynamic event triggered transmission.
    Wu J; Qiu S; Liu M; Li H; Liu Y
    Math Biosci Eng; 2022 May; 19(7):6883-6906. PubMed ID: 35730287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time convergence.
    Dong H; Hu Q; Ma G
    ISA Trans; 2016 Mar; 61():87-94. PubMed ID: 26775087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Event-Triggered Finite-Time Attitude Cooperative Control for Multiple Unmanned Aerial Vehicles.
    Han Q; Zhou Y; Liu X; Tuo X
    Appl Bionics Biomech; 2022; 2022():5875004. PubMed ID: 35237345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural-Network-Based Adaptive Event-triggered Control for Spacecraft Attitude Tracking.
    Liu W; Geng Y; Wu B; Wang D
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4015-4024. PubMed ID: 31825877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decentralized finite-time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer.
    Zong Q; Shao S
    ISA Trans; 2016 Nov; 65():150-163. PubMed ID: 27615668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique.
    Song Z; Li H; Sun K
    ISA Trans; 2014 Jan; 53(1):117-24. PubMed ID: 24055099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Truly Distributed Finite-Time Attitude Formation-Containment Control for Networked Uncertain Rigid Spacecraft.
    Cui B; Xia Y; Liu K; Zhang J; Wang Y; Shen G
    IEEE Trans Cybern; 2022 Jul; 52(7):5882-5896. PubMed ID: 33306477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-Quaternion Analytic LQR Control Design for Spacecraft Proximity Operations.
    Stanfield K; Bani Younes A
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34064184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonsingular fixed-time attitude coordinated tracking control for multiple rigid spacecraft.
    Tian Y; Du C; Lu P; Jiang Q; Liu H
    ISA Trans; 2022 Oct; 129(Pt B):243-256. PubMed ID: 35248367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive disturbance observer-based dual-loop integral-type fast terminal sliding mode control for micro spacecraft and its gimbal tracking device.
    Zhang L; Nan H; Zhao Z; Yuan Y
    ISA Trans; 2022 Nov; 130():121-135. PubMed ID: 35361485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive fixed-time sliding mode control for spacecraft reorientation with attitude pointing constraints and disturbance rejection.
    Guan T; Zhang K; Li B; Guan X; Yiu KC
    ISA Trans; 2023 Dec; 143():50-58. PubMed ID: 37806819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full quaternion based finite-time cascade attitude control approach via pulse modulation synthesis for a spacecraft.
    Mazinan AH; Pasand M; Soltani B
    ISA Trans; 2015 Sep; 58():567-85. PubMed ID: 26142216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.
    Zou AM; Kumar KD
    IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1155-62. PubMed ID: 24807141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-Time Attitude Stabilization Adaptive Control for Spacecraft with Actuator Dynamics.
    Wang C; Ye D; Mu Z; Sun Z; Wu S
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31888307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angle-Only Cooperative Orbit Determination Considering Attitude Uncertainty.
    Shi Y; Wang J; Liu C; Wang Y; Xu Q; Zhou X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive fast sliding mode fault tolerant control integrated with disturbance observer for spacecraft attitude stabilization system.
    Guo B; Chen Y
    ISA Trans; 2019 Nov; 94():1-9. PubMed ID: 31047644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.