BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33244526)

  • 1. Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method.
    Chandy SK; Thapa B; Raghavachari K
    Phys Chem Chem Phys; 2020 Dec; 22(47):27781-27799. PubMed ID: 33244526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.
    Jose KV; Raghavachari K
    J Chem Theory Comput; 2017 Mar; 13(3):1147-1158. PubMed ID: 28194972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate and Cost-Effective NMR Chemical Shift Predictions for Nucleic Acids Using a Molecules-in-Molecules Fragmentation-Based Method.
    Chandy SK; Raghavachari K
    J Chem Theory Comput; 2023 Jan; ():. PubMed ID: 36630261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the use of 13C(alpha) chemical shifts to determine, refine, and validate protein structures.
    Vila JA; Scheraga HA
    Proteins; 2008 May; 71(2):641-54. PubMed ID: 17975838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method.
    Zhu T; Zhang JZ; He X
    Adv Exp Med Biol; 2015; 827():49-70. PubMed ID: 25387959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach.
    He X; Wang B; Merz KM
    J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A joined theoretical-experimental investigation on the 1H and 13C NMR signatures of defects in poly(vinyl chloride).
    d'Antuono P; Botek E; Champagne B; Wieme J; Reyniers MF; Marin GB; Adriaensens PJ; Gelan JM
    J Phys Chem B; 2008 Nov; 112(47):14804-18. PubMed ID: 18975894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: the influenza a M2 transmembrane peptide as an example.
    Hong M; Mishanina TV; Cady SD
    J Am Chem Soc; 2009 Jun; 131(22):7806-16. PubMed ID: 19441789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules.
    Swails J; Zhu T; He X; Case DA
    J Biomol NMR; 2015 Oct; 63(2):125-39. PubMed ID: 26232926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Fragmentation QM/MM Calculation of Amide Proton Chemical Shifts in Proteins with Explicit Solvent Model.
    Zhu T; Zhang JZ; He X
    J Chem Theory Comput; 2013 Apr; 9(4):2104-14. PubMed ID: 26583557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.
    Neal S; Nip AM; Zhang H; Wishart DS
    J Biomol NMR; 2003 Jul; 26(3):215-40. PubMed ID: 12766419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1H chemical shifts in NMR. Part 21--prediction of the 1H chemical shifts of molecules containing the ester group: a modelling and ab initio investigation.
    Abraham RJ; Bardsley B; Mobli M; Smith RJ
    Magn Reson Chem; 2005 Jan; 43(1):3-15. PubMed ID: 15390026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward the Quantum Chemical Calculation of NMR Chemical Shifts of Proteins. 3. Conformational Sampling and Explicit Solvents Model.
    Exner TE; Frank A; Onila I; Möller HM
    J Chem Theory Comput; 2012 Nov; 8(11):4818-27. PubMed ID: 26605634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MIM-ML: A Novel Quantum Chemical Fragment-Based Random Forest Model for Accurate Prediction of NMR Chemical Shifts of Nucleic Acids.
    Chandy SK; Raghavachari K
    J Chem Theory Comput; 2023 Oct; 19(19):6632-6642. PubMed ID: 37703522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Fragmentation Strategies for Large Proteins Using the Multilayer Molecules-in-Molecules Approach.
    Thapa B; Beckett D; Jovan Jose KV; Raghavachari K
    J Chem Theory Comput; 2018 Mar; 14(3):1383-1394. PubMed ID: 29450992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Elucidating Structure-Spectra Relationships in Rhamnogalacturonan II: Computational Protocols for Accurate
    Bharadwaj VS; Westawker LP; Crowley MF
    Front Mol Biosci; 2021; 8():756219. PubMed ID: 35141275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regression formulas for density functional theory calculated 1H and 13C NMR chemical shifts in toluene-d8.
    Konstantinov IA; Broadbelt LJ
    J Phys Chem A; 2011 Nov; 115(44):12364-72. PubMed ID: 21966955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated framework for NMR chemical shift calculations of small organic molecules.
    Yesiltepe Y; Nuñez JR; Colby SM; Thomas DG; Borkum MI; Reardon PN; Washton NM; Metz TO; Teeguarden JG; Govind N; Renslow RS
    J Cheminform; 2018 Oct; 10(1):52. PubMed ID: 30367288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.