BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33244588)

  • 1. Ultra-fast scalable estimation of single-cell differentiation potency from scRNA-Seq data.
    Teschendorff AE; Maity AK; Hu X; Weiyan C; Lechner M
    Bioinformatics; 2021 Jul; 37(11):1528-1534. PubMed ID: 33244588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating Differentiation Potency of Single Cells Using Single-Cell Entropy (SCENT).
    Chen W; Teschendorff AE
    Methods Mol Biol; 2019; 1935():125-139. PubMed ID: 30758824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistical simulator scDesign for rational scRNA-seq experimental design.
    Li WV; Li JJ
    Bioinformatics; 2019 Jul; 35(14):i41-i50. PubMed ID: 31510652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scRMD: imputation for single cell RNA-seq data via robust matrix decomposition.
    Chen C; Wu C; Wu L; Wang X; Deng M; Xi R
    Bioinformatics; 2020 May; 36(10):3156-3161. PubMed ID: 32119079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DECENT: differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data.
    Ye C; Speed TP; Salim A
    Bioinformatics; 2019 Dec; 35(24):5155-5162. PubMed ID: 31197307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scDoc: correcting drop-out events in single-cell RNA-seq data.
    Ran D; Zhang S; Lytal N; An L
    Bioinformatics; 2020 Aug; 36(15):4233-4239. PubMed ID: 32365169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPARSim single cell: a count data simulator for scRNA-seq data.
    Baruzzo G; Patuzzi I; Di Camillo B
    Bioinformatics; 2020 Mar; 36(5):1468-1475. PubMed ID: 31598633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CMF-Impute: an accurate imputation tool for single-cell RNA-seq data.
    Xu J; Cai L; Liao B; Zhu W; Yang J
    Bioinformatics; 2020 May; 36(10):3139-3147. PubMed ID: 32073612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scHinter: imputing dropout events for single-cell RNA-seq data with limited sample size.
    Ye P; Ye W; Ye C; Li S; Ye L; Ji G; Wu X
    Bioinformatics; 2020 Feb; 36(3):789-797. PubMed ID: 31392316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.