BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 33244652)

  • 1. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation.
    Jhanji M; Rao CN; Sajish M
    Geroscience; 2021 Jun; 43(3):1171-1200. PubMed ID: 33244652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cis- and trans-resveratrol have opposite effects on histone serine-ADP-ribosylation and tyrosine induced neurodegeneration.
    Jhanji M; Rao CN; Massey JC; Hope MC; Zhou X; Keene CD; Ma T; Wyatt MD; Stewart JA; Sajish M
    Nat Commun; 2022 Jun; 13(1):3244. PubMed ID: 35688816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol.
    Sajish M; Schimmel P
    Nature; 2015 Mar; 519(7543):370-3. PubMed ID: 25533949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resveratrol Attenuates Aβ25-35 Caused Neurotoxicity by Inducing Autophagy Through the TyrRS-PARP1-SIRT1 Signaling Pathway.
    Deng H; Mi MT
    Neurochem Res; 2016 Sep; 41(9):2367-79. PubMed ID: 27180189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation.
    Yanez M; Jhanji M; Murphy K; Gower RM; Sajish M; Jabbarzadeh E
    Sci Rep; 2019 Jul; 9(1):10219. PubMed ID: 31308445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resveratrol attenuates oxidative injury in human umbilical vein endothelial cells through regulating mitochondrial fusion via TyrRS-PARP1 pathway.
    Yang J; Zhou X; Zeng X; Hu O; Yi L; Mi M
    Nutr Metab (Lond); 2019; 16():9. PubMed ID: 30733817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resveratrol targets TyrRS acetylation to protect against radiation-induced damage.
    Gao P; Li N; Ji K; Wang Y; Xu C; Liu Y; Wang Q; Wang J; He N; Sun Z; Du L; Liu Q
    FASEB J; 2019 Jul; 33(7):8083-8093. PubMed ID: 30939244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Dose Trans-Resveratrol Ameliorates Diabetes-Induced Retinal Ganglion Cell Degeneration via TyrRS/c-Jun Pathway.
    Xiao K; Ma XH; Zhong Z; Zhao Y; Chen XH; Sun XF
    Invest Ophthalmol Vis Sci; 2023 Jun; 64(7):2. PubMed ID: 37261387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.
    Henning RJ; Bourgeois M; Harbison RD
    Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis.
    Abdelali A; Al-Bader M; Kilarkaje N
    Toxicol Appl Pharmacol; 2016 Nov; 311():61-73. PubMed ID: 27687054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage.
    Cao X; Li C; Xiao S; Tang Y; Huang J; Zhao S; Li X; Li J; Zhang R; Yu W
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):687-692. PubMed ID: 28069943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of tyrosyl-tRNA synthetases from Archaea.
    Kuratani M; Sakai H; Takahashi M; Yanagisawa T; Kobayashi T; Murayama K; Chen L; Liu ZJ; Wang BC; Kuroishi C; Kuramitsu S; Terada T; Bessho Y; Shirouzu M; Sekine S; Yokoyama S
    J Mol Biol; 2006 Jan; 355(3):395-408. PubMed ID: 16325203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acyl-CoA-binding domain containing 3 modulates NAD+ metabolism through activating poly(ADP-ribose) polymerase 1.
    Chen Y; Bang S; Park S; Shi H; Kim SF
    Biochem J; 2015 Jul; 469(2):189-98. PubMed ID: 25940138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New perspectives on the plant PARP family: Arabidopsis PARP3 is inactive, and PARP1 exhibits predominant poly (ADP-ribose) polymerase activity in response to DNA damage.
    Gu Z; Pan W; Chen W; Lian Q; Wu Q; Lv Z; Cheng X; Ge X
    BMC Plant Biol; 2019 Aug; 19(1):364. PubMed ID: 31426748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The double-length tyrosyl-tRNA synthetase from the eukaryote Leishmania major forms an intrinsically asymmetric pseudo-dimer.
    Larson ET; Kim JE; Castaneda LJ; Napuli AJ; Zhang Z; Fan E; Zucker FH; Verlinde CL; Buckner FS; Van Voorhis WC; Hol WG; Merritt EA
    J Mol Biol; 2011 Jun; 409(2):159-76. PubMed ID: 21420975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine.
    Zhang Y; Wang L; Schultz PG; Wilson IA
    Protein Sci; 2005 May; 14(5):1340-9. PubMed ID: 15840835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases.
    Wakasugi K; Yokosawa T
    Enzymes; 2020; 48():207-242. PubMed ID: 33837705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Poly(ADP-Ribose) Polymerase 1 Activity by Y-Box-Binding Protein 1.
    Naumenko KN; Sukhanova MV; Hamon L; Kurgina TA; Alemasova EE; Kutuzov MM; Pastré D; Lavrik OI
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32947956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins.
    Alemasova EE; Lavrik OI
    Nucleic Acids Res; 2019 May; 47(8):3811-3827. PubMed ID: 30799503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Poly(ADP-Ribose) Polymerases 1 and 2: Classical Functions and Interaction with New Histone Poly(ADP-Ribosyl)ation Factor HPF1].
    Kurgina TA; Lavrik OI
    Mol Biol (Mosk); 2023; 57(2):254-268. PubMed ID: 37000654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.