These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33244748)

  • 1. Annual Cycle of Mat-Forming Filamentous Alga Tribonema cf. minus (Stramenopiles, Xanthophyceae) in Hydro-Terrestrial Habitats in the High Arctic Revealed By Multiparameter Fluorescent Staining.
    Jimel M; Kvíderová J; Elster J
    J Phycol; 2021 Jun; 57(3):780-796. PubMed ID: 33244748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Annual Cycles of Two Cyanobacterial Mat Communities in Hydro-Terrestrial Habitats of the High Arctic.
    Tashyreva D; Elster J
    Microb Ecol; 2016 May; 71(4):887-900. PubMed ID: 26841797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annual Cycle of Freshwater Diatoms in the High Arctic Revealed by Multiparameter Fluorescent Staining.
    Hejduková E; Elster J; Nedbalová L
    Microb Ecol; 2020 Oct; 80(3):559-572. PubMed ID: 32488483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats.
    Pichrtová M; Kulichová J; Holzinger A
    PLoS One; 2014; 9(11):e113137. PubMed ID: 25398135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a novel strain of Tribonema minus demonstrating high biomass productivity in outdoor raceway ponds.
    Davis AK; Anderson RS; Spierling R; Leader S; Lesne C; Mahan K; Lundquist T; Benemann JR; Lane T; Polle JEW
    Bioresour Technol; 2021 Jul; 331():125007. PubMed ID: 33798856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation.
    Pichrtová M; Hájek T; Elster J
    FEMS Microbiol Ecol; 2014 Aug; 89(2):270-80. PubMed ID: 24476153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel sulfur supply strategy for maximizing lipid production in Tribonema minus (Xanthophyceae).
    Gao B; Hong J; Deng Q; Han B; Kong J; Zhang C
    Bioresour Technol; 2024 Feb; 394():130205. PubMed ID: 38104661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid.
    Zhou W; Wang H; Chen L; Cheng W; Liu T
    Bioresour Technol; 2017 Sep; 239():250-257. PubMed ID: 28531849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes).
    Trumhová K; Holzinger A; Obwegeser S; Neuner G; Pichrtová M
    Protoplasma; 2019 Nov; 256(6):1681-1694. PubMed ID: 31292718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of substrate on growth and lipid accumulation of Tribonema sp. FACHB-1786].
    Zhang T; He Q; Xu Z; Suo F; Zhang C; Hu Q
    Sheng Wu Gong Cheng Xue Bao; 2020 Nov; 36(11):2478-2493. PubMed ID: 33244942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes.
    Wang H; Gao L; Zhou W; Liu T
    Bioprocess Biosyst Eng; 2016 Oct; 39(10):1589-95. PubMed ID: 27250652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An oleaginous filamentous microalgae Tribonema minus exhibits high removing potential of industrial phenol contaminants.
    Cheng T; Zhang W; Zhang W; Yuan G; Wang H; Liu T
    Bioresour Technol; 2017 Aug; 238():749-754. PubMed ID: 28526282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast reactivation of photosynthesis in arctic phytoplankton during the polar night
    Kvernvik AC; Hoppe CJM; Lawrenz E; Prášil O; Greenacre M; Wiktor JM; Leu E
    J Phycol; 2018 Aug; 54(4):461-470. PubMed ID: 29723414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Transformation of
    Zhang Y; Wang H; Yang R; Wang L; Yang G; Liu T
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32204356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum when affected by desiccation and low temperatures.
    Bednaříková M; Váczi P; Lazár D; Barták M
    Photosynth Res; 2020 Aug; 145(2):159-177. PubMed ID: 32720111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sodium selenite on the growth, biochemical composition and selenium biotransformation of the filamentous microalga Tribonema minus.
    Wang F; Li Y; Yang R; Zhang N; Li S; Zhu Z
    Bioresour Technol; 2023 Sep; 384():129313. PubMed ID: 37302765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal changes in light availability modify the temperature dependence of secondary production in an Arctic stream.
    Huryn AD; Benstead JP
    Ecology; 2019 Jun; 100(6):e02690. PubMed ID: 30854634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods.
    Worland MR; Block W
    J Insect Physiol; 2003 Mar; 49(3):193-203. PubMed ID: 12769994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway.
    Descamps S; Aars J; Fuglei E; Kovacs KM; Lydersen C; Pavlova O; Pedersen ÅØ; Ravolainen V; Strøm H
    Glob Chang Biol; 2017 Feb; 23(2):490-502. PubMed ID: 27250039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.