BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33244868)

  • 1. Membrane insertion mechanism and molecular assembly of the bacteriophage lysis toxin ΦX174-E.
    Mezhyrova J; Martin J; Peetz O; Dötsch V; Morgner N; Ma Y; Bernhard F
    FEBS J; 2021 May; 288(10):3300-3316. PubMed ID: 33244868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic evidence that the bacteriophage phi X174 lysis protein inhibits cell wall synthesis.
    Bernhardt TG; Roof WD; Young R
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4297-302. PubMed ID: 10760296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the transmembrane domain of lysis protein E from bacteriophage phiX174 with bacterial translocase MraY and peptidyl-prolyl isomerase SlyD.
    Mendel S; Holbourn JM; Schouten JA; Bugg TDH
    Microbiology (Reading); 2006 Oct; 152(Pt 10):2959-2967. PubMed ID: 17005977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Escherichia coli FKBP-type PPIase SlyD is required for the stabilization of the E lysis protein of bacteriophage phi X174.
    Bernhardt TG; Roof WD; Young R
    Mol Microbiol; 2002 Jul; 45(1):99-108. PubMed ID: 12100551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of the phage-encoded protein antibiotic from ΦX174.
    Orta AK; Riera N; Li YE; Tanaka S; Yun HG; Klaic L; Clemons WM
    Science; 2023 Jul; 381(6654):eadg9091. PubMed ID: 37440661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. slyD, a host gene required for phi X174 lysis, is related to the FK506-binding protein family of peptidyl-prolyl cis-trans-isomerases.
    Roof WD; Horne SM; Young KD; Young R
    J Biol Chem; 1994 Jan; 269(4):2902-10. PubMed ID: 8300625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phi X174 lysis requires slyD, a host gene which is related to the FKBP family of peptidyl-prolyl cis-trans isomerases.
    Roof WD; Young R
    FEMS Microbiol Rev; 1995 Aug; 17(1-2):213-8. PubMed ID: 7669348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of slyD, an Escherichia coli gene encoding a protein of the FKBP immunophilin family.
    Roof WD; Fang HQ; Young KD; Sun J; Young R
    Mol Microbiol; 1997 Sep; 25(6):1031-46. PubMed ID: 9350861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of a highly active folding enzyme by combining a parvulin-type prolyl isomerase from SurA with an unrelated chaperone domain.
    Geitner AJ; Varga E; Wehmer M; Schmid FX
    J Mol Biol; 2013 Nov; 425(22):4089-98. PubMed ID: 23871892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of complex formation between the Escherichia coli hydrogenase accessory factors HypB and SlyD.
    Leach MR; Zhang JW; Zamble DB
    J Biol Chem; 2007 Jun; 282(22):16177-86. PubMed ID: 17426034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR solution structure of SlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function.
    Weininger U; Haupt C; Schweimer K; Graubner W; Kovermann M; Brüser T; Scholz C; Schaarschmidt P; Zoldak G; Schmid FX; Balbach J
    J Mol Biol; 2009 Mar; 387(2):295-305. PubMed ID: 19356587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solubilization of aggregation-prone heterologous proteins by covalent fusion of stress-responsive Escherichia coli protein, SlyD.
    Han KY; Song JA; Ahn KY; Park JS; Seo HS; Lee J
    Protein Eng Des Sel; 2007 Nov; 20(11):543-9. PubMed ID: 17971396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of the human prolyl isomerase FKBP12 with unrelated chaperone domains leads to chimeric folding enzymes with high activity.
    Geitner AJ; Schmid FX
    J Mol Biol; 2012 Jul; 420(4-5):335-49. PubMed ID: 22542528
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Mezhyrova J; Martin J; Börnsen C; Dötsch V; Frangakis AS; Morgner N; Bernhard F
    Microbiome Res Rep; 2023; 2(4):28. PubMed ID: 38045926
    [No Abstract]   [Full Text] [Related]  

  • 15. Binding specificity of Escherichia coli trigger factor.
    Patzelt H; Rüdiger S; Brehmer D; Kramer G; Vorderwülbecke S; Schaffitzel E; Waitz A; Hesterkamp T; Dong L; Schneider-Mergener J; Bukau B; Deuerling E
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14244-9. PubMed ID: 11724963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertion of a chaperone domain converts FKBP12 into a powerful catalyst of protein folding.
    Knappe TA; Eckert B; Schaarschmidt P; Scholz C; Schmid FX
    J Mol Biol; 2007 May; 368(5):1458-68. PubMed ID: 17397867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimal requirements for inhibition of MraY by lysis protein E from bacteriophage ΦX174.
    Tanaka S; Clemons WM
    Mol Microbiol; 2012 Sep; 85(5):975-85. PubMed ID: 22742425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and functional characterization of phiX174 lysis protein E.
    Zheng Y; Struck DK; Young R
    Biochemistry; 2009 Jun; 48(22):4999-5006. PubMed ID: 19379010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential Prepore Trimer Formation by the Bacillus thuringiensis Mosquito-specific Toxin: MOLECULAR INSIGHTS INTO A CRITICAL PREREQUISITE OF MEMBRANE-BOUND MONOMERS.
    Sriwimol W; Aroonkesorn A; Sakdee S; Kanchanawarin C; Uchihashi T; Ando T; Angsuthanasombat C
    J Biol Chem; 2015 Aug; 290(34):20793-20803. PubMed ID: 26112409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of the elongated collagen prolyl 4-hydroxylase α
    Koski MK; Anantharajan J; Kursula P; Dhavala P; Murthy AV; Bergmann U; Myllyharju J; Wierenga RK
    Biochem J; 2017 Feb; 474(5):751-769. PubMed ID: 28093469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.