These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33244933)

  • 1. [Construction of seamless genome editing system for fast-growing Vibrio natriegens].
    Wu F; Liang Y; Zhang Y; Huo Y; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2020 Nov; 36(11):2387-2397. PubMed ID: 33244933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the capabilities of MuGENT for large-scale genetic engineering of the fastest-replicating species,
    Glasgo LD; Lukasiak KL; Zinser ER
    Microbiol Spectr; 2024 Jun; 12(6):e0396423. PubMed ID: 38667341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Biology Tools for the Fast-Growing Marine Bacterium
    Tschirhart T; Shukla V; Kelly EE; Schultzhaus Z; NewRingeisen E; Erickson JS; Wang Z; Garcia W; Curl E; Egbert RG; Yeung E; Vora GJ
    ACS Synth Biol; 2019 Sep; 8(9):2069-2079. PubMed ID: 31419124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex Genome Editing by Natural Transformation (MuGENT) for Synthetic Biology in Vibrio natriegens.
    Dalia TN; Hayes CA; Stolyar S; Marx CJ; McKinlay JB; Dalia AB
    ACS Synth Biol; 2017 Sep; 6(9):1650-1655. PubMed ID: 28571309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Marburg Collection: A Golden Gate DNA Assembly Framework for Synthetic Biology Applications in
    Stukenberg D; Hensel T; Hoff J; Daniel B; Inckemann R; Tedeschi JN; Nousch F; Fritz G
    ACS Synth Biol; 2021 Aug; 10(8):1904-1919. PubMed ID: 34255476
    [No Abstract]   [Full Text] [Related]  

  • 6. NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens.
    Stukenberg D; Hoff J; Faber A; Becker A
    Commun Biol; 2022 Mar; 5(1):265. PubMed ID: 35338236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanin Produced by the Fast-Growing Marine Bacterium Vibrio natriegens through Heterologous Biosynthesis: Characterization and Application.
    Wang Z; Tschirhart T; Schultzhaus Z; Kelly EE; Chen A; Oh E; Nag O; Glaser ER; Kim E; Lloyd PF; Charles PT; Li W; Leary D; Compton J; Phillips DA; Dhinojwala A; Payne GF; Vora GJ
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31836580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Reconstruction of Regulatory Parts for Fast-frowing
    Wu F; Chen W; Peng Y; Tu R; Lin Y; Xing J; Wang Q
    ACS Synth Biol; 2020 Sep; 9(9):2399-2409. PubMed ID: 32786358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Scale Modeling and Systems Metabolic Engineering of Vibrio natriegens for the Production of 1,3-Propanediol.
    Zhang Y; Liu D; Chen Z
    Methods Mol Biol; 2023; 2553():209-220. PubMed ID: 36227546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural transformation of Vibrio natriegens with large genetic cluster enables alginate assimilation for isopentenol production.
    Lee Y; Kim K; Choi M; Seo SW
    Bioresour Technol; 2024 Jun; 406():130988. PubMed ID: 38885723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome recombination and modification by LoxP-mediated evolution in Vibrio natriegens using CRISPR-associated transposases.
    Xu J; Sun Y; Wu J; Yang S; Yang L
    Biotechnol Bioeng; 2024 Mar; 121(3):1163-1172. PubMed ID: 38131162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient natural plasmid transformation of
    Specht DA; Sheppard TJ; Kennedy F; Li S; Gadikota G; Barstow B
    PNAS Nexus; 2024 Feb; 3(2):pgad444. PubMed ID: 38352175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a plasmid stabilization system in Vibrio natriegens for the high production of 1,3-propanediol and 3-hydroxypropionate.
    Zhang Y; Sun Q; Liu Y; Cen X; Liu D; Chen Z
    Bioresour Bioprocess; 2021 Dec; 8(1):125. PubMed ID: 38650249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting the Feedstock Flexibility of the Emergent Synthetic Biology Chassis
    Ellis GA; Tschirhart T; Spangler J; Walper SA; Medintz IL; Vora GJ
    Mar Drugs; 2019 Nov; 17(12):. PubMed ID: 31801279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Vibrio natriegens.
    Thoma F; Blombach B
    Essays Biochem; 2021 Jul; 65(2):381-392. PubMed ID: 33835156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of a Prophage-Free Variant of the Fast-Growing Bacterium Vibrio natriegens.
    Pfeifer E; Michniewski S; Gätgens C; Münch E; Müller F; Polen T; Millard A; Blombach B; Frunzke J
    Appl Environ Microbiol; 2019 Sep; 85(17):. PubMed ID: 31253674
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Xu J; Dong F; Wu M; Tao R; Yang J; Wu M; Jiang Y; Yang S; Yang L
    Front Microbiol; 2021; 12():627181. PubMed ID: 33679648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing a Cell-Free Vibrio natriegens Expression System.
    Wiegand DJ; Lee HH; Ostrov N; Church GM
    ACS Synth Biol; 2018 Oct; 7(10):2475-2479. PubMed ID: 30160938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrio natriegens: an ultrafast-growing marine bacterium as emerging synthetic biology chassis.
    Hoff J; Daniel B; Stukenberg D; Thuronyi BW; Waldminghaus T; Fritz G
    Environ Microbiol; 2020 Oct; 22(10):4394-4408. PubMed ID: 32537803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of simple expression procedures in novel expression host Vibrio natriegens and established Escherichia coli system.
    Kormanová Ľ; Rybecká S; Levarski Z; Struhárňanská E; Levarská L; Blaško J; Turňa J; Stuchlík S
    J Biotechnol; 2020 Sep; 321():57-67. PubMed ID: 32589894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.