These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33244933)

  • 41. Vibrio natriegens as a host for rapid biotechnology.
    Xu J; Yang S; Yang L
    Trends Biotechnol; 2022 Apr; 40(4):381-384. PubMed ID: 34794836
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High Substrate Uptake Rates Empower Vibrio natriegens as Production Host for Industrial Biotechnology.
    Hoffart E; Grenz S; Lange J; Nitschel R; Müller F; Schwentner A; Feith A; Lenfers-Lücker M; Takors R; Blombach B
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28887417
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Speeding up bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory.
    Fernández-Llamosas H; Castro L; Blázquez ML; Díaz E; Carmona M
    Sci Rep; 2017 Nov; 7(1):16046. PubMed ID: 29167550
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell-free Protein Expression Using the Rapidly Growing Bacterium Vibrio natriegens.
    Wiegand DJ; Lee HH; Ostrov N; Church GM
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30933074
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiplex genome editing by natural transformation in Vibrio mimicus with potential application in attenuated vaccine development.
    Yu Z; Wang E; Geng Y; Wang K; Chen D; Huang X; Ouyang P; Zuo Z; He C; Tang L; Yang Z; Lai W
    Fish Shellfish Immunol; 2019 Sep; 92():377-383. PubMed ID: 31202969
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Introducing
    Garschagen LS; Mancinelli RL; Moeller R
    Astrobiology; 2019 Oct; 19(10):1211-1220. PubMed ID: 31486680
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi.
    Lee HH; Ostrov N; Wong BG; Gold MA; Khalil AS; Church GM
    Nat Microbiol; 2019 Jul; 4(7):1105-1113. PubMed ID: 30962569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PCR-Based Seamless Genome Editing with High Efficiency and Fidelity in Escherichia coli.
    Liu Y; Yang M; Chen J; Yan D; Cheng W; Wang Y; Thygesen A; Chen R; Xing J; Wang Q; Ma Y
    PLoS One; 2016; 11(3):e0149762. PubMed ID: 27019283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of
    Matteau D; Pepin ME; Baby V; Gauthier S; Arango Giraldo M; Knight TF; Rodrigue S
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115382
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improvement of Euglena gracilis Paramylon Production through a Cocultivation Strategy with the Indole-3-Acetic Acid-Producing Bacterium Vibrio natriegens.
    Kim JY; Oh JJ; Jeon MS; Kim GH; Choi YE
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31324633
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhancing plasmid transformation efficiency and enabling CRISPR-Cas9/Cpf1-based genome editing in Clostridium tyrobutyricum.
    Zhang J; Hong W; Guo L; Wang Y; Wang Y
    Biotechnol Bioeng; 2020 Sep; 117(9):2911-2917. PubMed ID: 32437010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A double-locus scarless genome editing system in Escherichia coli.
    Liu H; Hou G; Wang P; Guo G; Wang Y; Yang N; Rehman MNU; Li C; Li Q; Zheng J; Zeng J; Li S
    Biotechnol Lett; 2020 Aug; 42(8):1457-1465. PubMed ID: 32130564
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Draft Genome Sequence of the Fast-Growing Marine Bacterium Vibrio natriegens Strain ATCC 14048.
    Wang Z; Lin B; Hervey WJ; Vora GJ
    Genome Announc; 2013 Aug; 1(4):. PubMed ID: 23929482
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Draft Genome Sequence of the Fast-Growing Bacterium Vibrio natriegens Strain DSMZ 759.
    Maida I; Bosi E; Perrin E; Papaleo MC; Orlandini V; Fondi M; Fani R; Wiegel J; Bianconi G; Canganella F
    Genome Announc; 2013 Aug; 1(4):. PubMed ID: 23969053
    [TBL] [Abstract][Full Text] [Related]  

  • 56. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli.
    Li Q; Sun B; Chen J; Zhang Y; Jiang Y; Yang S
    Acta Biochim Biophys Sin (Shanghai); 2021 Apr; 53(5):620-627. PubMed ID: 33764372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 60. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.