These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33245091)

  • 1. GeneReg: a constraint-based approach for design of feasible metabolic engineering strategies at the gene level.
    Razaghi-Moghadam Z; Nikoloski Z
    Bioinformatics; 2021 Jul; 37(12):1717-1723. PubMed ID: 33245091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ICON-GEMs: integration of co-expression network in genome-scale metabolic models, shedding light through systems biology.
    Paklao T; Suratanee A; Plaimas K
    BMC Bioinformatics; 2023 Dec; 24(1):492. PubMed ID: 38129786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering.
    Cotten C; Reed JL
    Biotechnol J; 2013 May; 8(5):595-604. PubMed ID: 23703951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid of Cuckoo Search and Minimization of Metabolic Adjustment to optimize metabolites production in genome-scale models.
    Arif MA; Mohamad MS; Abd Latif MS; Deris S; Remli MA; Mohd Daud K; Ibrahim Z; Omatu S; Corchado JM
    Comput Biol Med; 2018 Nov; 102():112-119. PubMed ID: 30267898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Truncated branch and bound achieves efficient constraint-based genetic design.
    Egen D; Lun DS
    Bioinformatics; 2012 Jun; 28(12):1619-23. PubMed ID: 22543499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale strain designs based on regulatory minimal cut sets.
    Mahadevan R; von Kamp A; Klamt S
    Bioinformatics; 2015 Sep; 31(17):2844-51. PubMed ID: 25913205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FastKnock: an efficient next-generation approach to identify all knockout strategies for strain optimization.
    Hassani L; Moosavi MR; Setoodeh P; Zare H
    Microb Cell Fact; 2024 Jan; 23(1):37. PubMed ID: 38287320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OptDesign: Identifying Optimum Design Strategies in Strain Engineering for Biochemical Production.
    Jiang S; Otero-Muras I; Banga JR; Wang Y; Kaiser M; Krasnogor N
    ACS Synth Biol; 2022 Apr; 11(4):1531-1541. PubMed ID: 35389631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OptRAM: In-silico strain design via integrative regulatory-metabolic network modeling.
    Shen F; Sun R; Yao J; Li J; Liu Q; Price ND; Liu C; Wang Z
    PLoS Comput Biol; 2019 Mar; 15(3):e1006835. PubMed ID: 30849073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of bioprocess productivity based on metabolic-genetic network models with bilevel dynamic programming.
    Jabarivelisdeh B; Waldherr S
    Biotechnol Bioeng; 2018 Jul; 115(7):1829-1841. PubMed ID: 29578608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NIHBA: a network interdiction approach for metabolic engineering design.
    Jiang S; Wang Y; Kaiser M; Krasnogor N
    Bioinformatics; 2020 Jun; 36(11):3482-3492. PubMed ID: 32167529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories.
    Maia P; Rocha M; Rocha I
    Microbiol Mol Biol Rev; 2016 Mar; 80(1):45-67. PubMed ID: 26609052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms.
    von Kamp A; Klamt S
    Nat Commun; 2017 Jun; 8():15956. PubMed ID: 28639622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints.
    Ren S; Zeng B; Qian X
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S17. PubMed ID: 23368729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico screening of triple reaction knockout Escherichia coli strains for overproduction of useful metabolites.
    Ohno S; Furusawa C; Shimizu H
    J Biosci Bioeng; 2013 Feb; 115(2):221-8. PubMed ID: 23041138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximization of non-idle enzymes improves the coverage of the estimated maximal in vivo enzyme catalytic rates in Escherichia coli.
    Xu R; Razaghi-Moghadam Z; Nikoloski Z
    Bioinformatics; 2021 Nov; 37(21):3848-3855. PubMed ID: 34358300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative multi-goal tradeoffs in systems engineering of microbial metabolism.
    Byrne D; Dumitriu A; Segrè D
    BMC Syst Biol; 2012 Sep; 6():127. PubMed ID: 23009214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-based design of bistable cell factories for metabolic engineering.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2018 Apr; 34(8):1363-1371. PubMed ID: 29220508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.