These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33245196)

  • 21. Neural correlates of risk prediction error during reinforcement learning in humans.
    d'Acremont M; Lu ZL; Li X; Van der Linden M; Bechara A
    Neuroimage; 2009 Oct; 47(4):1929-39. PubMed ID: 19442744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different aspects of performance feedback engage different brain areas: disentangling valence and expectancy in feedback processing.
    Ferdinand NK; Opitz B
    Sci Rep; 2014 Aug; 4():5986. PubMed ID: 25100234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning.
    Gerraty RT; Davidow JY; Foerde K; Galvan A; Bassett DS; Shohamy D
    J Neurosci; 2018 Mar; 38(10):2442-2453. PubMed ID: 29431652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Social structure learning in human anterior insula.
    Lau T; Gershman SJ; Cikara M
    Elife; 2020 Feb; 9():. PubMed ID: 32067635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ERP correlates of social conformity in a line judgment task.
    Chen J; Wu Y; Tong G; Guan X; Zhou X
    BMC Neurosci; 2012 May; 13():43. PubMed ID: 22554347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human dorsal striatal activity during choice discriminates reinforcement learning behavior from the gambler's fallacy.
    Jessup RK; O'Doherty JP
    J Neurosci; 2011 Apr; 31(17):6296-304. PubMed ID: 21525269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Common neurofunctional dysregulations characterize obsessive-compulsive, substance use, and gaming disorders-An activation likelihood meta-analysis of functional imaging studies.
    Klugah-Brown B; Zhou X; Pradhan BK; Zweerings J; Mathiak K; Biswal B; Becker B
    Addict Biol; 2021 Jul; 26(4):e12997. PubMed ID: 33432718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural mechanisms underlying human consensus decision-making.
    Suzuki S; Adachi R; Dunne S; Bossaerts P; O'Doherty JP
    Neuron; 2015 Apr; 86(2):591-602. PubMed ID: 25864634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.
    Fuentes-Claramonte P; Ávila C; Rodríguez-Pujadas A; Ventura-Campos N; Bustamante JC; Costumero V; Rosell-Negre P; Barrós-Loscertales A
    PLoS One; 2015; 10(4):e0123073. PubMed ID: 25875640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cocaine dependent individuals with attenuated striatal activation during reinforcement learning are more susceptible to relapse.
    Stewart JL; Connolly CG; May AC; Tapert SF; Wittmann M; Paulus MP
    Psychiatry Res; 2014 Aug; 223(2):129-39. PubMed ID: 24862388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI.
    Badre D; Frank MJ
    Cereb Cortex; 2012 Mar; 22(3):527-36. PubMed ID: 21693491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The neural basis of social influence and attitude change.
    Izuma K
    Curr Opin Neurobiol; 2013 Jun; 23(3):456-62. PubMed ID: 23608704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response anticipation and response conflict: an event-related potential and functional magnetic resonance imaging study.
    Fan J; Kolster R; Ghajar J; Suh M; Knight RT; Sarkar R; McCandliss BD
    J Neurosci; 2007 Feb; 27(9):2272-82. PubMed ID: 17329424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frontostriatal anatomical connections predict age- and difficulty-related differences in reinforcement learning.
    van de Vijver I; Ridderinkhof KR; Harsay H; Reneman L; Cavanagh JF; Buitenweg JI; Cohen MX
    Neurobiol Aging; 2016 Oct; 46():1-12. PubMed ID: 27460144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the medial frontal cortex in cognitive control.
    Ridderinkhof KR; Ullsperger M; Crone EA; Nieuwenhuis S
    Science; 2004 Oct; 306(5695):443-7. PubMed ID: 15486290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurocomputational mechanisms of adaptive learning in social exchanges.
    Vanyukov PM; Hallquist MN; Delgado M; Szanto K; Dombrovski AY
    Cogn Affect Behav Neurosci; 2019 Aug; 19(4):985-997. PubMed ID: 30756349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The feedback-related negativity (FRN) revisited: new insights into the localization, meaning and network organization.
    Hauser TU; Iannaccone R; Stämpfli P; Drechsler R; Brandeis D; Walitza S; Brem S
    Neuroimage; 2014 Jan; 84():159-68. PubMed ID: 23973408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of Striatal Prediction Errors by the Prefrontal Cortex in Placebo Hypoalgesia.
    Schenk LA; Sprenger C; Onat S; Colloca L; Büchel C
    J Neurosci; 2017 Oct; 37(40):9715-9723. PubMed ID: 28883019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vicarious reinforcement learning signals when instructing others.
    Apps MA; Lesage E; Ramnani N
    J Neurosci; 2015 Feb; 35(7):2904-13. PubMed ID: 25698730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural substrates of updating the prediction through prediction error during decision making.
    Wang Y; Ma N; He X; Li N; Wei Z; Yang L; Zha R; Han L; Li X; Zhang D; Liu Y; Zhang X
    Neuroimage; 2017 Aug; 157():1-12. PubMed ID: 28536046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.