BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33245198)

  • 1. Heterochrony and growth rate variation mediate the development of divergent genital morphologies in closely related Ohomopterus ground beetles.
    Terada K; Nishimura T; Hirayama A; Takami Y
    Evol Dev; 2021 Jan; 23(1):19-27. PubMed ID: 33245198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of extremely large male genitalia under spatial limitation.
    Terada K; Furumoto C; Nishimura T; Hirayama A; Takami Y
    Evol Dev; 2024 Jun; ():e12488. PubMed ID: 38927009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproductive Character Displacement in Genital Morphology in
    Nishimura T; Nagata N; Terada K; Xia T; Kubota K; Sota T; Takami Y
    Am Nat; 2022 Mar; 199(3):E76-E90. PubMed ID: 35175894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QTL for the species-specific male and female genital morphologies in Ohomopterus ground beetles.
    Sasabe M; Takami Y; Sota T
    Mol Ecol; 2010 Dec; 19(23):5231-9. PubMed ID: 21040054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary changes in gene expression profiles associated with the coevolution of male and female genital parts among closely related ground beetle species.
    Nomura S; Sota T
    BMC Genomics; 2022 Sep; 23(1):637. PubMed ID: 36076166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptomic analysis of two closely related ground beetle species with marked genital divergence using pyrosequencing.
    Fujimaki K; Fujisawa T; Yazawa S; Nishimura O; Sota T
    Zoolog Sci; 2014 Sep; 31(9):587-92. PubMed ID: 25186930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproductive isolation via divergent genital morphology due to cascade reinforcement in Ohomopterus ground beetles.
    Xia T; Nishimura T; Nagata N; Kubota K; Sota T; Takami Y
    J Evol Biol; 2023 Jan; 36(1):169-182. PubMed ID: 36357996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the length of genital parts affects copulation performance in a carabid beetle: implications for correlated genital evolution between the sexes.
    Okuzaki Y; Sota T
    J Evol Biol; 2014 Mar; 27(3):565-74. PubMed ID: 24471576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression during genital morphogenesis in the ground beetle Carabus maiyasanus.
    Nomura S; Fujisawa T; Sota T
    Insect Sci; 2020 Oct; 27(5):975-986. PubMed ID: 31318143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Sex-Concordant Gene Expression in the Coevolution of Exaggerated Male and Female Genitalia in a Beetle Group.
    Nomura S; Fujisawa T; Sota T
    Mol Biol Evol; 2021 Aug; 38(9):3593-3605. PubMed ID: 33905498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic basis of species-specific genitalia reveals role in species diversification.
    Fujisawa T; Sasabe M; Nagata N; Takami Y; Sota T
    Sci Adv; 2019 Jun; 5(6):eaav9939. PubMed ID: 31249868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversification in a fluctuating island setting: rapid radiation of Ohomopterus ground beetles in the Japanese Islands.
    Sota T; Nagata N
    Philos Trans R Soc Lond B Biol Sci; 2008 Oct; 363(1508):3377-90. PubMed ID: 18765360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetic basis of interspecific differences in genital morphology of closely related carabid beetles.
    Sasabe M; Takami Y; Sota T
    Heredity (Edinb); 2007 Jun; 98(6):385-91. PubMed ID: 17327872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GENITAL LOCK-AND-KEY AS A SELECTIVE AGENT AGAINST HYBRIDIZATION.
    Sota T; Kubota K
    Evolution; 1998 Oct; 52(5):1507-1513. PubMed ID: 28565390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid diversification of male genitalia and mating strategies in Ohomopterus ground beetles.
    Takami Y; Sota T
    J Evol Biol; 2007 Jul; 20(4):1385-95. PubMed ID: 17584233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of sexually antagonistic genital morphologies on female reproduction and wild population demography.
    Takami Y; Fukuhara T; Yokoyama J; Kawata M
    Evolution; 2018 Nov; 72(11):2449-2461. PubMed ID: 30238547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mating behavior and the function of the male genital spine in the ground beetle Carabus clathratus.
    Okuzaki Y; Takami Y; Tsuchiya Y; Sota T
    Zoolog Sci; 2012 Jul; 29(7):428-32. PubMed ID: 22775250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive trans-species mitochondrial polymorphisms in the carabid beetles Carabus subgenus Ohomopterus caused by repeated introgressive hybridization.
    Sota T; Ishikawa R; Ujiie M; Kusumoto F; Vogler AP
    Mol Ecol; 2001 Dec; 10(12):2833-47. PubMed ID: 11903896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid divergent evolution of internal female genitalia and the coevolution of male genital morphology revealed by micro-computed tomography.
    Sloan NS; Harvey MS; Huey JA; Simmons LW
    Proc Biol Sci; 2024 Jan; 291(2015):20232883. PubMed ID: 38290544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of relative trait size and shape: insights from the genitalia of dung beetles.
    Parzer HF; David Polly P; Moczek AP
    Dev Genes Evol; 2018 Mar; 228(2):83-93. PubMed ID: 29423654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.