These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33245912)

  • 1. Role of reduced flavin in dehalogenation reactions.
    Sobrado P
    Arch Biochem Biophys; 2021 Jan; 697():108696. PubMed ID: 33245912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple functionalities of reduced flavin in the non-redox reaction catalyzed by UDP-galactopyranose mutase.
    Sobrado P; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():59-65. PubMed ID: 28652025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases.
    Matthews A; Saleem-Batcha R; Sanders JN; Stull F; Houk KN; Teufel R
    Nat Chem Biol; 2020 May; 16(5):556-563. PubMed ID: 32066967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavin-N5 Covalent Intermediate in a Nonredox Dehalogenation Reaction Catalyzed by an Atypical Flavoenzyme.
    Dai Y; Kizjakina K; Campbell AC; Korasick DA; Tanner JJ; Sobrado P
    Chembiochem; 2018 Jan; 19(1):53-57. PubMed ID: 29116682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological dehalogenation and halogenation reactions.
    van Pée KH; Unversucht S
    Chemosphere; 2003 Jul; 52(2):299-312. PubMed ID: 12738254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavin-dependent dehalogenases.
    Pimviriyakul P; Chaiyen P
    Enzymes; 2020; 47():365-397. PubMed ID: 32951828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial reductive dehalogenation.
    Mohn WW; Tiedje JM
    Microbiol Rev; 1992 Sep; 56(3):482-507. PubMed ID: 1406492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic control of dioxygen binding and functionalization of the flavin cofactor.
    Saleem-Batcha R; Stull F; Sanders JN; Moore BS; Palfey BA; Houk KN; Teufel R
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4909-4914. PubMed ID: 29686059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the Formation of a Radical-Mediated Flavin-N5 Covalent Intermediate.
    Dai Y; Valentino H; Sobrado P
    Chembiochem; 2018 Aug; 19(15):1609-1612. PubMed ID: 29776001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial dehalogenation.
    Fetzner S
    Appl Microbiol Biotechnol; 1998 Dec; 50(6):633-57. PubMed ID: 9891928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncanonical reactions of flavoenzymes.
    Sobrado P
    Int J Mol Sci; 2012 Nov; 13(11):14219-42. PubMed ID: 23203060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic C6-Functionalized Aminoflavin Catalysts Enable Aerobic Bromination of Oxidation-Prone Substrates.
    Walter A; Storch G
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22505-22509. PubMed ID: 32790228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin.
    Phintha A; Chaiyen P
    J Biol Chem; 2023 Dec; 299(12):105413. PubMed ID: 37918809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.
    El Gamal A; Agarwal V; Rahman I; Moore BS
    J Am Chem Soc; 2016 Oct; 138(40):13167-13170. PubMed ID: 27676265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.
    Agarwal V; Miles ZD; Winter JM; Eustáquio AS; El Gamal AA; Moore BS
    Chem Rev; 2017 Apr; 117(8):5619-5674. PubMed ID: 28106994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the enzymatic formation, chemical features, and biological role of the flavin-N5-oxide.
    Saleem-Batcha R; Teufel R
    Curr Opin Chem Biol; 2018 Dec; 47():47-53. PubMed ID: 30165331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox control of iodotyrosine deiodinase.
    Hu J; Su Q; Schlessman JL; Rokita SE
    Protein Sci; 2019 Jan; 28(1):68-78. PubMed ID: 30052294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid kinetics of dehalogenation promoted by iodotyrosine deiodinase from human thyroid.
    Bobyk KD; Ballou DP; Rokita SE
    Biochemistry; 2015 Jul; 54(29):4487-94. PubMed ID: 26151430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme.
    Wongnate T; Surawatanawong P; Visitsatthawong S; Sucharitakul J; Scrutton NS; Chaiyen P
    J Am Chem Soc; 2014 Jan; 136(1):241-53. PubMed ID: 24368083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.