These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33246131)

  • 1. Engineering xylose metabolism in yeasts to produce biofuels and chemicals.
    Lee JW; Yook S; Koh H; Rao CV; Jin YS
    Curr Opin Biotechnol; 2021 Feb; 67():15-25. PubMed ID: 33246131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae.
    Sun L; Jin YS
    Biotechnol J; 2021 Apr; 16(4):e2000142. PubMed ID: 33135317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency.
    Tchakouteu SS; Kalantzi O; Gardeli C; Koutinas AA; Aggelis G; Papanikolaou S
    J Appl Microbiol; 2015 Apr; 118(4):911-27. PubMed ID: 25626733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward rapid and efficient utilization of nonconventional substrates by nonconventional yeast strains.
    Koh HG; Yook S; Oh H; Rao CV; Jin YS
    Curr Opin Biotechnol; 2024 Feb; 85():103059. PubMed ID: 38171048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of biofuels and chemicals from xylose using native and engineered yeast strains.
    Kwak S; Jo JH; Yun EJ; Jin YS; Seo JH
    Biotechnol Adv; 2019; 37(2):271-283. PubMed ID: 30553928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae.
    Lane S; Dong J; Jin YS
    Bioresour Technol; 2018 Jul; 260():380-394. PubMed ID: 29655899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels.
    Adrio JL
    Biotechnol Bioeng; 2017 Sep; 114(9):1915-1920. PubMed ID: 28498495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of D-arabitol from D-xylose by the oleaginous yeast Rhodosporidium toruloides IFO0880.
    Jagtap SS; Rao CV
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):143-151. PubMed ID: 29127468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Progress in studies on production of chemicals from xylose by Saccharomyces cerevisiae].
    Wang M; Luan T; Zhao J; Li H; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):1042-1057. PubMed ID: 33783167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review.
    Sun T; Yu Y; Wang K; Ledesma-Amaro R; Ji XJ
    Bioresour Technol; 2021 Oct; 337():125484. PubMed ID: 34320765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient sugar utilization and high tolerance to inhibitors enable Rhodotorula toruloides C23 to robustly produce lipid and carotenoid from lignocellulosic feedstock.
    Xue SJ; Li XC; Liu J; Zhang XT; Xin ZZ; Jiang WW; Zhang JY
    Bioresour Technol; 2024 Sep; 407():131146. PubMed ID: 39047799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotenoid Production in Oleaginous Yeasts.
    Kanamoto H; Nakamura K; Misawa N
    Adv Exp Med Biol; 2021; 1261():153-163. PubMed ID: 33783737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty alcohol production in
    Wang W; Wei H; Knoshaug E; Van Wychen S; Xu Q; Himmel ME; Zhang M
    Biotechnol Biofuels; 2016; 9():227. PubMed ID: 27800013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and analysis of sugar transporters capable of co-transporting glucose and xylose simultaneously.
    Kuanyshev N; Deewan A; Jagtap SS; Liu J; Selvam B; Chen LQ; Shukla D; Rao CV; Jin YS
    Biotechnol J; 2021 Nov; 16(11):e2100238. PubMed ID: 34418308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. System analysis of Lipomyces starkeyi during growth on various plant-based sugars.
    Deewan A; Liu JJ; Jagtap SS; Yun EJ; Walukiewicz H; Jin YS; Rao CV
    Appl Microbiol Biotechnol; 2022 Sep; 106(17):5629-5642. PubMed ID: 35906440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.
    Turner TL; Kim H; Kong II; Liu JJ; Zhang GC; Jin YS
    Adv Biochem Eng Biotechnol; 2018; 162():175-215. PubMed ID: 27913828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oleaginous yeasts respond differently to carbon sources present in lignocellulose hydrolysate.
    Brandenburg J; Blomqvist J; Shapaval V; Kohler A; Sampels S; Sandgren M; Passoth V
    Biotechnol Biofuels; 2021 May; 14(1):124. PubMed ID: 34051838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.