These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 33246139)
1. Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae. Krishna Moorthy A; Govindarajan Rathi B; Shukla SP; Kumar K; Shree Bharti V Environ Toxicol Pharmacol; 2021 Feb; 82():103552. PubMed ID: 33246139 [TBL] [Abstract][Full Text] [Related]
2. Application of Microalgal Physiological Response as Biomarker for Evaluating the Toxicity of the Textile Dye Alizarin Red S. Moorthy AK; Shukla SP; Govindarajan RB; Kumar K; Bharti VS Bull Environ Contam Toxicol; 2022 Aug; 109(2):401-408. PubMed ID: 35441856 [TBL] [Abstract][Full Text] [Related]
3. Effect of 2,4-dichlorophenoxyacetic acid on growth, protein and chlorophyll-a content of Chlorella vulgaris and Spirulina platensis cells. Saygideger SD; Okkay O J Environ Biol; 2008 Mar; 29(2):175-8. PubMed ID: 18831369 [TBL] [Abstract][Full Text] [Related]
4. Toxic Effects of Selected Textile Dyes on Elemental Composition, Photosynthetic Pigments, Protein Content and Growth of a Freshwater Chlorophycean Alga Chlorella vulgaris. Gita S; Shukla SP; Saharan N; Prakash C; Deshmukhe G Bull Environ Contam Toxicol; 2019 Jun; 102(6):795-801. PubMed ID: 30927019 [TBL] [Abstract][Full Text] [Related]
5. Toxicity Evaluation of Six Textile Dyes on Growth, Metabolism and Elemental Composition (C, H, N, S) of Microalgae Spirulina platensis: The Environmental Consequences. Gita S; Shukla SP; Deshmukhe G; Choudhury TG; Saharan N; Singh AK Bull Environ Contam Toxicol; 2021 Feb; 106(2):302-309. PubMed ID: 33388901 [TBL] [Abstract][Full Text] [Related]
6. Eco-toxicological effect of a commercial dye Rhodamine B on freshwater microalgae Chlorella vulgaris. Sudarshan S; Bharti VS; Harikrishnan S; Shukla SP; RathiBhuvaneswari G Arch Microbiol; 2022 Oct; 204(10):658. PubMed ID: 36183287 [TBL] [Abstract][Full Text] [Related]
7. Effect of metals of treated electroplating industrial effluents on antioxidant defense system in the microalga Chlorella vulgaris. Ajitha V; Sreevidya CP; Kim JH; Bright Singh IS; Mohandas A; Lee JS; Puthumana J Aquat Toxicol; 2019 Dec; 217():105317. PubMed ID: 31670168 [TBL] [Abstract][Full Text] [Related]
8. Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris. Guo J; Peng J; Lei Y; Kanerva M; Li Q; Song J; Guo J; Sun H Aquat Toxicol; 2020 Feb; 219():105376. PubMed ID: 31838304 [TBL] [Abstract][Full Text] [Related]
9. Effects of the antimalarial lumefantrine on Lemna minor, Raphidocelis subcapitata and Chlorella vulgaris. Chia MA; Ameh I; Agee JT; Otogo RA; Shaba AF; Bashir H; Umar F; Yisa AG; Uyovbisere EE; Sha'aba RI Environ Toxicol Pharmacol; 2021 Jul; 85():103635. PubMed ID: 33716093 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of toxic effects of platinum-based antineoplastic drugs (cisplatin, carboplatin and oxaliplatin) on green alga Chlorella vulgaris. Dehghanpour S; Pourzamani HR; Amin MM; Ebrahimpour K Aquat Toxicol; 2020 Jun; 223():105495. PubMed ID: 32371336 [TBL] [Abstract][Full Text] [Related]
11. Optimization Growth of Spirulina (Arthrospira) Platensis in Photobioreactor Under Varied Nitrogen Concentration for Maximized Biomass, Carotenoids and Lipid Contents. El Baky HHA; El Baroty GS; Mostafa EM Recent Pat Food Nutr Agric; 2020; 11(1):40-48. PubMed ID: 30588890 [TBL] [Abstract][Full Text] [Related]
12. The impact of polystyrene nanoplastics (PSNPs) on physiological and biochemical parameters of the microalgae Spirulina platensis. Karimi J; Asgharpour A; Mohsenzadeh S; Abbasi S J Hazard Mater; 2024 Aug; 474():134644. PubMed ID: 38838520 [TBL] [Abstract][Full Text] [Related]
13. Effect of elevated benzophenone-4 (BP4) concentration on Chlorella vulgaris growth and cellular metabolisms. Huang Y; Luo L; Ma XY; Wang XC Environ Sci Pollut Res Int; 2018 Nov; 25(32):32549-32561. PubMed ID: 30238265 [TBL] [Abstract][Full Text] [Related]
15. Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris. Markou G; Muylaert K Bioresour Technol; 2016 Sep; 216():453-61. PubMed ID: 27262720 [TBL] [Abstract][Full Text] [Related]
17. Guidance for formulating ingredients/products from Chlorella vulgaris and Arthrospira platensis considering carotenoid and chlorophyll bioaccessibility and cellular uptake. Nass PP; do Nascimento TC; Fernandes AS; Caetano PA; de Rosso VV; Jacob-Lopes E; Zepka LQ Food Res Int; 2022 Jul; 157():111469. PubMed ID: 35761700 [TBL] [Abstract][Full Text] [Related]
18. Concentration-dependent effects of spinetoram on nontarget freshwater microalgae: A comparative study on Chlorella vulgaris and Microcystis aeruginosa. Wang J; Li M; Yin T; Ma X; Zhu X Environ Res; 2024 Jul; 252(Pt 1):118755. PubMed ID: 38555091 [TBL] [Abstract][Full Text] [Related]
19. Perturbation of fatty acid composition, pigments, and growth indices of Chlorella vulgaris in response to silver ions and nanoparticles: A new holistic understanding of hidden ecotoxicological aspect of pollutants. Behzadi Tayemeh M; Esmailbeigi M; Shirdel I; Joo HS; Johari SA; Banan A; Nourani H; Mashhadi H; Jami MJ; Tabarrok M Chemosphere; 2020 Jan; 238():124576. PubMed ID: 31421462 [TBL] [Abstract][Full Text] [Related]
20. Exploration of using stripped ammonia and ash from poultry litter for the cultivation of the cyanobacterium Arthrospira platensis and the green microalga Chlorella vulgaris. Markou G; Iconomou D; Sotiroudis T; Israilides C; Muylaert K Bioresour Technol; 2015 Nov; 196():459-68. PubMed ID: 26280098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]