BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33246189)

  • 21. Dosimetric characteristics of the INTRABEAM ® system with spherical applicators in the presence of air gaps and tissue heterogeneities.
    Tegaw EM; Gholami S; Omyan G; Geraily G
    Radiat Environ Biophys; 2020 May; 59(2):295-306. PubMed ID: 32236740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dosimetric evaluation of an intraoperative radiotherapy system: a measurement-based and Monte-Carlo modelling investigation.
    Chin M; Rowshanfarzad P; Neveri G; Ebert MA; Pfefferlé D
    Phys Eng Sci Med; 2023 Jun; 46(2):687-701. PubMed ID: 36952208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microdosimetric characteristics of 50 kV X rays at different depths for breast intraoperative radiotherapy.
    Wuu CS; Sheu RD; Chen J
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):343-6. PubMed ID: 25877537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical Implication of Dosimetry Formalisms for Electronic Low-Energy Photon Intraoperative Radiation Therapy.
    Watson PGF; Popovic M; Liang L; Tomic N; Devic S; Seuntjens J
    Pract Radiat Oncol; 2021; 11(1):e114-e121. PubMed ID: 32795615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Comparison between Electron Gamma Shower, National Research Council/Easy Particle Propagation (EGSnrc/Epp) and Monte Carlo N-Particle Transport Code (MCNP) in Simulation of the INTRABEAM ® System with Spherical Applicators.
    Tegaw EM; Geraily G; Etesami SM; Gholami S; Ghanbari H; Farzin M; Tadesse GF; Shojaei M
    J Biomed Phys Eng; 2021 Feb; 11(1):47-54. PubMed ID: 33564639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intraoperative Radiotherapy With INTRABEAM: Technical and Dosimetric Considerations.
    Sethi A; Emami B; Small W; Thomas TO
    Front Oncol; 2018; 8():74. PubMed ID: 29632850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a spherical applicator for intraoperative radiotherapy with a linear accelerator-a Monte Carlo simulation.
    Ma P; Li Y; Tian Y; Liu B; Zhou F; Dai J
    Phys Med Biol; 2018 Dec; 64(1):015014. PubMed ID: 30524037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monte Carlo simulation of the RBE of I-131 radiation using DNA damage as biomarker.
    Ezzati AO; Mahmoud-Pashazadeh A; Studenski MT
    Australas Phys Eng Sci Med; 2017 Jun; 40(2):395-400. PubMed ID: 28397060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monte Carlo modelling of radiotherapy kV x-ray units.
    Verhaegen F; Nahum AE; Van de Putte S; Namito Y
    Phys Med Biol; 1999 Jul; 44(7):1767-89. PubMed ID: 10442712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dosimetric evaluation of the INTRABEAM system for breast intraoperative radiotherapy: A single-institution experience.
    Shaikh MY; Nalichowski A; Joiner MC; Burmeister J
    Med Dosim; 2020 Summer; 45(2):e1-e6. PubMed ID: 31606269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions.
    Fonseca GP; Landry G; White S; D'Amours M; Yoriyaz H; Beaulieu L; Reniers B; Verhaegen F
    Phys Med Biol; 2014 Oct; 59(19):5921-35. PubMed ID: 25210788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling the radiobiological effect of intraoperative X-ray brachytherapy for breast cancer using an air-filled spherical applicator.
    Armoogum K; Evans S; Morgan D
    J Contemp Brachytherapy; 2016 Aug; 8(4):313-8. PubMed ID: 27648085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel approach for superficial intraoperative radiotherapy (IORT) using a 50 kV X-ray source: a technical and case report.
    Schneider F; Clausen S; Thölking J; Wenz F; Abo-Madyan Y
    J Appl Clin Med Phys; 2014 Jan; 15(1):4502. PubMed ID: 24423847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calculation of the DNA damage yield and relative biological effectiveness in boron neutron capture therapy via the Monte Carlo track structure simulation.
    Han Y; Geng C; Liu Y; Wu R; Li M; Yu C; Altieri S; Tang X
    Phys Med Biol; 2023 Aug; 68(17):. PubMed ID: 37524085
    [No Abstract]   [Full Text] [Related]  

  • 35. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions.
    Stewart RD; Streitmatter SW; Argento DC; Kirkby C; Goorley JT; Moffitt G; Jevremovic T; Sandison GA
    Phys Med Biol; 2015 Nov; 60(21):8249-74. PubMed ID: 26449929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break.
    Wang CC; Hsiao Y; Lee CC; Chao TC; Wang CC; Tung CJ
    Int J Radiat Biol; 2012 Jan; 88(1-2):158-63. PubMed ID: 21823821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RBE of kV CBCT radiation determined by Monte Carlo DNA damage simulations.
    Kirkby C; Ghasroddashti E; Poirier Y; Tambasco M; Stewart RD
    Phys Med Biol; 2013 Aug; 58(16):5693-704. PubMed ID: 23899567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monte Carlo calculation of the dose distributions of two 106Ru eye applicators.
    Sánchez-Reyes A; Tello JI; Guix B; Salvat F
    Radiother Oncol; 1998 Nov; 49(2):191-6. PubMed ID: 10052886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monte Carlo simulation of DNA damage induction by x-rays and selected radioisotopes.
    Hsiao Y; Stewart RD
    Phys Med Biol; 2008 Jan; 53(1):233-44. PubMed ID: 18182699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monte Carlo commissioning of clinical electron beams using large field measurements.
    O'Shea TP; Sawkey DL; Foley MJ; Faddegon BA
    Phys Med Biol; 2010 Jul; 55(14):4083-105. PubMed ID: 20601775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.