These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33246756)
21. Groundwater quality mapping in urban groundwater using GIS. Nas B; Berktay A Environ Monit Assess; 2010 Jan; 160(1-4):215-27. PubMed ID: 19096909 [TBL] [Abstract][Full Text] [Related]
22. Application of geostatistics with Indicator Kriging for analyzing spatial variability of groundwater arsenic concentrations in Southwest Bangladesh. Hassan MM; Atkins PJ J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(11):1185-96. PubMed ID: 21879851 [TBL] [Abstract][Full Text] [Related]
23. Predicting arsenic concentrations in groundwater of San Luis Valley, Colorado: implications for individual-level lifetime exposure assessment. James KA; Meliker JR; Buttenfield BE; Byers T; Zerbe GO; Hokanson JE; Marshall JA Environ Geochem Health; 2014 Aug; 36(4):773-82. PubMed ID: 24429726 [TBL] [Abstract][Full Text] [Related]
24. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. Xiao Y; Gu X; Yin S; Shao J; Cui Y; Zhang Q; Niu Y Springerplus; 2016; 5():425. PubMed ID: 27104113 [TBL] [Abstract][Full Text] [Related]
25. Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon. Ouabo RE; Sangodoyin AY; Ogundiran MB J Health Pollut; 2020 Jun; 10(26):200605. PubMed ID: 32509406 [TBL] [Abstract][Full Text] [Related]
26. Ordinary kriging vs inverse distance weighting: spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico. Zarco-Perello S; Simões N PeerJ; 2017; 5():e4078. PubMed ID: 29204321 [TBL] [Abstract][Full Text] [Related]
27. Temporal and seasonal variability of arsenic in drinking water wells in Matlab, southeastern Bangladesh: a preliminary evaluation on the basis of a 4 year study. Bhattacharya P; Hossain M; Rahman SN; Robinson C; Nath B; Rahman M; Islam MM; Von Brömssen M; Ahmed KM; Jacks G; Chowdhury D; Rahman M; Jakariya M; Persson LÅ; Vahter M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(11):1177-84. PubMed ID: 21879850 [TBL] [Abstract][Full Text] [Related]
28. Bayesian modeling approach for characterizing groundwater arsenic contamination in the Mekong River basin. Cha Y; Kim YM; Choi JW; Sthiannopkao S; Cho KH Chemosphere; 2016 Jan; 143():50-6. PubMed ID: 25796421 [TBL] [Abstract][Full Text] [Related]
29. Groundwater arsenic contamination in Bangladesh-21 Years of research. Chakraborti D; Rahman MM; Mukherjee A; Alauddin M; Hassan M; Dutta RN; Pati S; Mukherjee SC; Roy S; Quamruzzman Q; Rahman M; Morshed S; Islam T; Sorif S; Selim M; Islam MR; Hossain MM J Trace Elem Med Biol; 2015; 31():237-48. PubMed ID: 25660323 [TBL] [Abstract][Full Text] [Related]
30. Spatial Prediction of Nitrate Concentration Using GIS and ANFIS Modelling in Groundwater. Jebastina N; Prince Arulraj G Bull Environ Contam Toxicol; 2018 Sep; 101(3):403-409. PubMed ID: 30069721 [TBL] [Abstract][Full Text] [Related]
31. Spatial Analysis of Human Health Risk Due to Arsenic Exposure through Drinking Groundwater in Taiwan's Pingtung Plain. Liang CP; Chien YC; Jang CS; Chen CF; Chen JS Int J Environ Res Public Health; 2017 Jan; 14(1):. PubMed ID: 28098817 [TBL] [Abstract][Full Text] [Related]
32. Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Varouchakis EA; Hristopulos DT Environ Monit Assess; 2013 Jan; 185(1):1-19. PubMed ID: 22311559 [TBL] [Abstract][Full Text] [Related]
33. Accuracy assessment of inverse distance weighting interpolation of groundwater nitrate concentrations in Bavaria (Germany). Ohlert PL; Bach M; Breuer L Environ Sci Pollut Res Int; 2023 Jan; 30(4):9445-9455. PubMed ID: 36057700 [TBL] [Abstract][Full Text] [Related]
34. Evaluations of groundwater contamination by leachates around Olusosun open dumpsite in Lagos metropolis, southwest Nigeria. Aboyeji OS; Eigbokhan SF J Environ Manage; 2016 Dec; 183():333-341. PubMed ID: 27609496 [TBL] [Abstract][Full Text] [Related]
35. Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India. Wu R; Podgorski J; Berg M; Polya DA Environ Geochem Health; 2021 Jul; 43(7):2649-2664. PubMed ID: 32653966 [TBL] [Abstract][Full Text] [Related]
36. Spatio-Temporal Analysis of Natural and Anthropogenic Arsenic Sources in Groundwater Flow Systems. Avila-Sandoval C; Júnez-Ferreira H; González-Trinidad J; Bautista-Capetillo C; Pacheco-Guerrero A; Olmos-Trujillo E Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30373185 [TBL] [Abstract][Full Text] [Related]
37. Appraising spatial variations of As, Fe, Mn and NO Ahmed N; Bodrud-Doza M; Towfiqul Islam ARM; Hossain S; Moniruzzaman M; Deb N; Bhuiyan MAQ Chemosphere; 2019 Mar; 218():726-740. PubMed ID: 30504048 [TBL] [Abstract][Full Text] [Related]
38. Spatial modeling for groundwater arsenic levels in North Carolina. Kim D; Miranda ML; Tootoo J; Bradley P; Gelfand AE Environ Sci Technol; 2011 Jun; 45(11):4824-31. PubMed ID: 21528844 [TBL] [Abstract][Full Text] [Related]
39. Comparison of four methods for spatial interpolation of estimated atmospheric nitrogen deposition in South China. Qu L; Xiao H; Zheng N; Zhang Z; Xu Y Environ Sci Pollut Res Int; 2017 Jan; 24(3):2578-2588. PubMed ID: 27826827 [TBL] [Abstract][Full Text] [Related]
40. [Geographic information system based spatial analysis on chronic arsenic poisoning in a tin mining area, Thailand]. Zhang J; Wu L; Lin K Wei Sheng Yan Jiu; 2007 May; 36(3):357-60. PubMed ID: 17712962 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]