BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33247095)

  • 1. A Cas-embedding strategy for minimizing off-target effects of DNA base editors.
    Liu Y; Zhou C; Huang S; Dang L; Wei Y; He J; Zhou Y; Mao S; Tao W; Zhang Y; Yang H; Huang X; Chi T
    Nat Commun; 2020 Nov; 11(1):6073. PubMed ID: 33247095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects.
    Zuo E; Sun Y; Yuan T; He B; Zhou C; Ying W; Liu J; Wei W; Zeng R; Li Y; Yang H
    Nat Methods; 2020 Jun; 17(6):600-604. PubMed ID: 32424272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing.
    McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z
    Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis.
    Zhou C; Sun Y; Yan R; Liu Y; Zuo E; Gu C; Han L; Wei Y; Hu X; Zeng R; Li Y; Zhou H; Guo F; Yang H
    Nature; 2019 Jul; 571(7764):275-278. PubMed ID: 31181567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity.
    Yu Y; Leete TC; Born DA; Young L; Barrera LA; Lee SJ; Rees HA; Ciaramella G; Gaudelli NM
    Nat Commun; 2020 Apr; 11(1):2052. PubMed ID: 32345976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences.
    Yu W; Li J; Huang S; Li X; Li P; Li G; Liang A; Chi T; Huang X
    BMC Biol; 2021 Feb; 19(1):34. PubMed ID: 33602235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR DNA base editors with reduced RNA off-target and self-editing activities.
    Grünewald J; Zhou R; Iyer S; Lareau CA; Garcia SP; Aryee MJ; Joung JK
    Nat Biotechnol; 2019 Sep; 37(9):1041-1048. PubMed ID: 31477922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
    Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK
    Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding C-T base editing toolkit with diversified cytidine deaminases.
    Cheng TL; Li S; Yuan B; Wang X; Zhou W; Qiu Z
    Nat Commun; 2019 Aug; 10(1):3612. PubMed ID: 31399578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AcrIIA5 Suppresses Base Editors and Reduces Their Off-Target Effects.
    Liang M; Sui T; Liu Z; Chen M; Liu H; Shan H; Lai L; Li Z
    Cells; 2020 Jul; 9(8):. PubMed ID: 32727031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base editors for simultaneous introduction of C-to-T and A-to-G mutations.
    Sakata RC; Ishiguro S; Mori H; Tanaka M; Tatsuno K; Ueda H; Yamamoto S; Seki M; Masuyama N; Nishida K; Nishimasu H; Arakawa K; Kondo A; Nureki O; Tomita M; Aburatani H; Yachie N
    Nat Biotechnol; 2020 Jul; 38(7):865-869. PubMed ID: 32483365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing.
    Grünewald J; Zhou R; Lareau CA; Garcia SP; Iyer S; Miller BR; Langner LM; Hsu JY; Aryee MJ; Joung JK
    Nat Biotechnol; 2020 Jul; 38(7):861-864. PubMed ID: 32483364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications.
    Molla KA; Yang Y
    Trends Biotechnol; 2019 Oct; 37(10):1121-1142. PubMed ID: 30995964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of base editors with anti-deaminases derived from viruses.
    Liu Z; Chen S; Lai L; Li Z
    Nat Commun; 2022 Feb; 13(1):597. PubMed ID: 35105899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of cytosine base editors with DNA damage minimization and editing scope diversification.
    Yuan B; Zhang S; Song L; Chen J; Cao J; Qiu J; Qiu Z; Chen J; Zhao XM; Cheng TL
    Nucleic Acids Res; 2023 Nov; 51(20):e105. PubMed ID: 37843111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes.
    Martin AS; Salamango DJ; Serebrenik AA; Shaban NM; Brown WL; Harris RS
    Sci Rep; 2019 Jan; 9(1):497. PubMed ID: 30679582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.
    Kim D; Lim K; Kim ST; Yoon SH; Kim K; Ryu SM; Kim JS
    Nat Biotechnol; 2017 May; 35(5):475-480. PubMed ID: 28398345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.
    Chadwick AC; Wang X; Musunuru K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system.
    Qin L; Li J; Wang Q; Xu Z; Sun L; Alariqi M; Manghwar H; Wang G; Li B; Ding X; Rui H; Huang H; Lu T; Lindsey K; Daniell H; Zhang X; Jin S
    Plant Biotechnol J; 2020 Jan; 18(1):45-56. PubMed ID: 31116473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.