BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33247158)

  • 1. Tumor microenvironment-targeted nanoparticles loaded with bortezomib and ROCK inhibitor improve efficacy in multiple myeloma.
    Federico C; Alhallak K; Sun J; Duncan K; Azab F; Sudlow GP; de la Puente P; Muz B; Kapoor V; Zhang L; Yuan F; Markovic M; Kotsybar J; Wasden K; Guenthner N; Gurley S; King J; Kohnen D; Salama NN; Thotala D; Hallahan DE; Vij R; DiPersio JF; Achilefu S; Azab AK
    Nat Commun; 2020 Nov; 11(1):6037. PubMed ID: 33247158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment.
    Azab AK; Quang P; Azab F; Pitsillides C; Thompson B; Chonghaile T; Patton JT; Maiso P; Monrose V; Sacco A; Ngo HT; Flores LM; Lin CP; Magnani JL; Kung AL; Letai A; Carrasco R; Roccaro AM; Ghobrial IM
    Blood; 2012 Feb; 119(6):1468-78. PubMed ID: 22096244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma.
    Gu Z; Wang X; Cheng R; Cheng L; Zhong Z
    Acta Biomater; 2018 Oct; 80():288-295. PubMed ID: 30240956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone-Targeted Bortezomib Inhibits Bortezomib-Resistant Multiple Myeloma in Mice by Providing Higher Levels of Bortezomib in Bone.
    Tao J; Srinivasan V; Yi X; Zhao Y; Zhang H; Lin X; Zhou X; Boyce BF; Villalta PW; Ebetino FH; Ho KK; Boeckman RK; Xing L
    J Bone Miner Res; 2022 Apr; 37(4):629-642. PubMed ID: 34970782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BCMA-targeted bortezomib nanotherapy improves therapeutic efficacy, overcomes resistance, and modulates the immune microenvironment in multiple myeloma.
    Dutta D; Liu J; Wen K; Kurata K; Fulciniti M; Gulla A; Hideshima T; Anderson KC
    Blood Cancer J; 2023 Dec; 13(1):184. PubMed ID: 38072962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Phase Transition Temperature on Therapeutic Efficacy of Liposomal Bortezomib.
    Korani M; Nikoofal-Sahlabadi S; Nikpoor AR; Ghaffari S; Attar H; Mashreghi M; Jaafari MR
    Anticancer Agents Med Chem; 2020; 20(6):700-708. PubMed ID: 31893998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing proteasome-inhibitory activity and specificity of bortezomib by CD38 targeted nanoparticles in multiple myeloma.
    de la Puente P; Luderer MJ; Federico C; Jin A; Gilson RC; Egbulefu C; Alhallak K; Shah S; Muz B; Sun J; King J; Kohnen D; Salama NN; Achilefu S; Vij R; Azab AK
    J Control Release; 2018 Jan; 270():158-176. PubMed ID: 29196043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth.
    Yasui H; Hideshima T; Ikeda H; Jin J; Ocio EM; Kiziltepe T; Okawa Y; Vallet S; Podar K; Ishitsuka K; Richardson PG; Pargellis C; Moss N; Raje N; Anderson KC
    Br J Haematol; 2007 Feb; 136(3):414-23. PubMed ID: 17173546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma.
    Zheng Y; Yang J; Qian J; Qiu P; Hanabuchi S; Lu Y; Wang Z; Liu Z; Li H; He J; Lin P; Weber D; Davis RE; Kwak L; Cai Z; Yi Q
    Leukemia; 2013 Mar; 27(3):702-10. PubMed ID: 22996336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade of deubiquitinase USP7 overcomes bortezomib resistance by suppressing NF-κB signaling pathway in multiple myeloma.
    Yao Y; Zhang Y; Shi M; Sun Y; Chen C; Niu M; Zhang Q; Zeng L; Yao R; Li H; Yang J; Li Z; Xu K
    J Leukoc Biol; 2018 Dec; 104(6):1105-1115. PubMed ID: 30024656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROS Overproduction Sensitises Myeloma Cells to Bortezomib-Induced Apoptosis and Alleviates Tumour Microenvironment-Mediated Cell Resistance.
    Caillot M; Zylbersztejn F; Maitre E; Bourgeais J; Hérault O; Sola B
    Cells; 2020 Oct; 9(11):. PubMed ID: 33114738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic activity in human neuroblastoma.
    Zuccari G; Milelli A; Pastorino F; Loi M; Petretto A; Parise A; Marchetti C; Minarini A; Cilli M; Emionite L; Di Paolo D; Brignole C; Piaggio F; Perri P; Tumiatti V; Pistoia V; Pagnan G; Ponzoni M
    J Control Release; 2015 Aug; 211():44-52. PubMed ID: 26031842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exosomal mRNAs and lncRNAs involved in multiple myeloma resistance to bortezomib.
    Tang JX; Chen Q; Li Q; He YH; Xiao D
    Cell Biol Int; 2021 May; 45(5):965-975. PubMed ID: 33372728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Lyn is a promising treatment for mantle cell lymphoma with bortezomib resistance.
    Kim A; Seong KM; Kang HJ; Park S; Lee SS
    Oncotarget; 2015 Nov; 6(35):38225-38. PubMed ID: 26517678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homoharringtonine enhances bortezomib antimyeloma activity in myeloma cells adhesion to bone marrow stromal cells and in SCID mouse xenografts.
    Chen P; Yuan Q; Yang H; Wen X; You P; Hou D; Xie J; Cheng Y; Huang H
    Leuk Res; 2017 Jun; 57():119-126. PubMed ID: 28463768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progesterone enhances vascular endothelial cell migration via activation of focal adhesion kinase.
    Zheng S; Huang J; Zhou K; Xiang Q; Zhang Y; Tan Z; Simoncini T; Fu X; Wang T
    J Cell Mol Med; 2012 Feb; 16(2):296-305. PubMed ID: 21418517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered nanomedicine for myeloma and bone microenvironment targeting.
    Swami A; Reagan MR; Basto P; Mishima Y; Kamaly N; Glavey S; Zhang S; Moschetta M; Seevaratnam D; Zhang Y; Liu J; Memarzadeh M; Wu J; Manier S; Shi J; Bertrand N; Lu ZN; Nagano K; Baron R; Sacco A; Roccaro AM; Farokhzad OC; Ghobrial IM
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10287-92. PubMed ID: 24982170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel M phase blocker, DCZ3301 enhances the sensitivity of bortezomib in resistant multiple myeloma through DNA damage and mitotic catastrophe.
    Hu L; Li B; Chen G; Song D; Xu Z; Gao L; Xi M; Zhou J; Li L; Zhang H; Feng Q; Wang Y; Lu K; Lu Y; Bu W; Wang H; Wu X; Zhu W; Shi J
    J Exp Clin Cancer Res; 2020 Jun; 39(1):105. PubMed ID: 32517809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacologic targeting of the p62 ZZ domain enhances both anti-tumor and bone-anabolic effects of bortezomib in multiple myeloma.
    Marino S; Petrusca DN; Bishop RT; Anderson JL; Sabol HM; Ashby C; Layer JH; Cesarano A; Davé UP; Perna F; Delgado-Calle J; Chirgwin JM; Roodman GD
    Haematologica; 2024 May; 109(5):1501-1513. PubMed ID: 37981834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bortezomib-loaded lipidic-nano drug delivery systems; formulation, therapeutic efficacy, and pharmacokinetics.
    Mahmoudian M; Valizadeh H; Löbenberg R; Zakeri-Milani P
    J Microencapsul; 2021 May; 38(3):192-202. PubMed ID: 33530812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.