These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 33247214)
1. MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction. Ding YQ; Zhang YH; Lu J; Li B; Yu WJ; Yue ZB; Hu YH; Wang PX; Li JY; Cai SD; Ye JT; Liu PQ Acta Pharmacol Sin; 2021 Sep; 42(9):1422-1436. PubMed ID: 33247214 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Meng G; Liu J; Liu S; Song Q; Liu L; Xie L; Han Y; Ji Y Br J Pharmacol; 2018 Apr; 175(8):1126-1145. PubMed ID: 28503736 [TBL] [Abstract][Full Text] [Related]
3. NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Yue Z; Ma Y; You J; Li Z; Ding Y; He P; Lu X; Jiang J; Chen S; Liu P Exp Cell Res; 2016 Oct; 347(2):261-73. PubMed ID: 27423420 [TBL] [Abstract][Full Text] [Related]
5. CD38 promotes angiotensin II-induced cardiac hypertrophy. Guan XH; Hong X; Zhao N; Liu XH; Xiao YF; Chen TT; Deng LB; Wang XL; Wang JB; Ji GJ; Fu M; Deng KY; Xin HB J Cell Mol Med; 2017 Aug; 21(8):1492-1502. PubMed ID: 28296029 [TBL] [Abstract][Full Text] [Related]
6. Angiotensin-(1-7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism. Guo L; Yin A; Zhang Q; Zhong T; O'Rourke ST; Sun C Am J Physiol Heart Circ Physiol; 2017 May; 312(5):H980-H991. PubMed ID: 28411231 [TBL] [Abstract][Full Text] [Related]
7. MicroRNA-195 Regulates Metabolism in Failing Myocardium Via Alterations in Sirtuin 3 Expression and Mitochondrial Protein Acetylation. Zhang X; Ji R; Liao X; Castillero E; Kennel PJ; Brunjes DL; Franz M; Möbius-Winkler S; Drosatos K; George I; Chen EI; Colombo PC; Schulze PC Circulation; 2018 May; 137(19):2052-2067. PubMed ID: 29330215 [TBL] [Abstract][Full Text] [Related]
8. Myocyte-specific enhancer factor 2C: a novel target gene of miR-214-3p in suppressing angiotensin II-induced cardiomyocyte hypertrophy. Tang CM; Liu FZ; Zhu JN; Fu YH; Lin QX; Deng CY; Hu ZQ; Yang H; Zheng XL; Cheng JD; Wu SL; Shan ZX Sci Rep; 2016 Oct; 6():36146. PubMed ID: 27796324 [TBL] [Abstract][Full Text] [Related]
9. The nuclear receptor RORα protects against angiotensin II-induced cardiac hypertrophy and heart failure. Beak JY; Kang HS; Huang W; Myers PH; Bowles DE; Jetten AM; Jensen BC Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H186-H200. PubMed ID: 30387679 [TBL] [Abstract][Full Text] [Related]
10. FTZ protects against cardiac hypertrophy and oxidative injury via microRNA-214 / SIRT3 signaling pathway. Zhang Y; Sun M; Wang D; Hu Y; Wang R; Diao H; Shao X; Li Y; Li X; Leng M; Wang L; Yan M; Rong X; Guo J Biomed Pharmacother; 2022 Apr; 148():112696. PubMed ID: 35183007 [TBL] [Abstract][Full Text] [Related]
11. Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Yang Y; Ago T; Zhai P; Abdellatif M; Sadoshima J Circ Res; 2011 Feb; 108(3):305-13. PubMed ID: 21183740 [TBL] [Abstract][Full Text] [Related]
12. miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. Huang J; Sun W; Huang H; Ye J; Pan W; Zhong Y; Cheng C; You X; Liu B; Xiong L; Liu S PLoS One; 2014; 9(4):e94382. PubMed ID: 24728149 [TBL] [Abstract][Full Text] [Related]
13. Downregulation of miR-128 Ameliorates Ang II-Induced Cardiac Remodeling via SIRT1/PIK3R1 Multiple Targets. Zhan H; Huang F; Niu Q; Jiao M; Han X; Zhang K; Ma W; Mi S; Guo S; Zhao Z Oxid Med Cell Longev; 2021; 2021():8889195. PubMed ID: 34646427 [TBL] [Abstract][Full Text] [Related]
14. High content screening identifies licoisoflavone A as a bioactive compound of Tongmaiyangxin Pills to restrain cardiomyocyte hypertrophy via activating Sirt3. Guo R; Liu N; Liu H; Zhang J; Zhang H; Wang Y; Baruscotti M; Zhao L; Wang Y Phytomedicine; 2020 Mar; 68():153171. PubMed ID: 32018211 [TBL] [Abstract][Full Text] [Related]
15. Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway. Ding J; Tang Q; Luo B; Zhang L; Lin L; Han L; Hao M; Li M; Yu L; Li M Eur J Pharmacol; 2019 Sep; 859():172549. PubMed ID: 31325434 [TBL] [Abstract][Full Text] [Related]
16. MiR-181a mediates Ang II-induced myocardial hypertrophy by mediating autophagy. Li AL; Lv JB; Gao L Eur Rev Med Pharmacol Sci; 2017 Dec; 21(23):5462-5470. PubMed ID: 29243791 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of miR-142-3p improves mitochondrial function in cardiac hypertrophy. Liu BL; Cheng M; Hu S; Wang S; Wang L; Tu X; Huang CX; Jiang H; Wu G Biomed Pharmacother; 2018 Dec; 108():1347-1356. PubMed ID: 30372837 [TBL] [Abstract][Full Text] [Related]
18. MiR-195-5p Promotes Cardiomyocyte Hypertrophy by Targeting MFN2 and FBXW7. Wang L; Qin D; Shi H; Zhang Y; Li H; Han Q Biomed Res Int; 2019; 2019():1580982. PubMed ID: 31341888 [TBL] [Abstract][Full Text] [Related]
19. MiR-423-5p Inhibition Exerts Protective Effects on Angiotensin II-Induced Cardiomyocyte Hypertrophy. Xu M; Liu D; Gao X; Wang Z; Zhang L; Fan H Tohoku J Exp Med; 2023 Feb; 259(3):199-208. PubMed ID: 36517015 [TBL] [Abstract][Full Text] [Related]
20. MicroRNA-17-5p Promotes Cardiac Hypertrophy by Targeting Mfn2 to Inhibit Autophagy. Xu X; Su YL; Shi JY; Lu Q; Chen C Cardiovasc Toxicol; 2021 Sep; 21(9):759-771. PubMed ID: 34120306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]