BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 33247284)

  • 1. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver.
    Hendriks D; Artegiani B; Hu H; Chuva de Sousa Lopes S; Clevers H
    Nat Protoc; 2021 Jan; 16(1):182-217. PubMed ID: 33247284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing.
    Artegiani B; Hendriks D; Beumer J; Kok R; Zheng X; Joore I; Chuva de Sousa Lopes S; van Zon J; Tans S; Clevers H
    Nat Cell Biol; 2020 Mar; 22(3):321-331. PubMed ID: 32123335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids.
    Hu H; Gehart H; Artegiani B; LĂ–pez-Iglesias C; Dekkers F; Basak O; van Es J; Chuva de Sousa Lopes SM; Begthel H; Korving J; van den Born M; Zou C; Quirk C; Chiriboga L; Rice CM; Ma S; Rios A; Peters PJ; de Jong YP; Clevers H
    Cell; 2018 Nov; 175(6):1591-1606.e19. PubMed ID: 30500538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids.
    Mun SJ; Ryu JS; Lee MO; Son YS; Oh SJ; Cho HS; Son MY; Kim DS; Kim SJ; Yoo HJ; Lee HJ; Kim J; Jung CR; Chung KS; Son MJ
    J Hepatol; 2019 Nov; 71(5):970-985. PubMed ID: 31299272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human Barrett epithelial organoids.
    Liu X; Cheng Y; Abraham JM; Wang Z; Wang Z; Ke X; Yan R; Shin EJ; Ngamruengphong S; Khashab MA; Zhang G; McNamara G; Ewald AJ; Lin D; Liu Z; Meltzer SJ
    Cancer Lett; 2018 Nov; 436():109-118. PubMed ID: 30144514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating and Utilizing Murine Cas9-Expressing Intestinal Organoids for Large-Scale Knockout Genetic Screening.
    Kashfi H; Jinks N; Nateri AS
    Methods Mol Biol; 2020; 2171():257-269. PubMed ID: 32705648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and immunofluorescent validation of gene knockouts in adult human colonic organoids using multi-guide RNA CRISPR-Cas9.
    Chan DKH; Collins SD; Buczacki SJA
    STAR Protoc; 2023 Mar; 4(1):101978. PubMed ID: 36598849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids.
    Ramakrishna G; Babu PE; Singh R; Trehanpati N
    Hepatol Int; 2021 Dec; 15(6):1309-1317. PubMed ID: 34596864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of Knockout Gene-Edited Human Intestinal Organoids.
    Rajendra C; Wald T; Barber K; Spence JR; Fattahi F; Klein OD
    Methods Mol Biol; 2020; 2171():215-230. PubMed ID: 32705644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A protocol for efficient CRISPR-Cas9-mediated knock-in in colorectal cancer patient-derived organoids.
    Okamoto T; Natsume Y; Yamanaka H; Fukuda M; Yao R
    STAR Protoc; 2021 Dec; 2(4):100780. PubMed ID: 34585151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of gene-of-interest knockouts in murine organoids using CRISPR-Cas9.
    Huber A; Dijkstra C; Ernst M; Eissmann MF
    STAR Protoc; 2023 Mar; 4(1):102076. PubMed ID: 36853714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth.
    Hendriks D; Artegiani B; Margaritis T; Zoutendijk I; Chuva de Sousa Lopes S; Clevers H
    Nat Commun; 2024 May; 15(1):4034. PubMed ID: 38740814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering in organoids.
    Teriyapirom I; Batista-Rocha AS; Koo BK
    J Mol Med (Berl); 2021 Apr; 99(4):555-568. PubMed ID: 33459801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel 3D liver organoid system for elucidation of hepatic glucose metabolism.
    Lu Y; Zhang G; Shen C; Uygun K; Yarmush ML; Meng Q
    Biotechnol Bioeng; 2012 Feb; 109(2):595-604. PubMed ID: 22006574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment and Genetic Manipulation of Murine Hepatocyte Organoids.
    Lian J; Meng X; Zhang X; Hu H
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35225254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene manipulation in liver ductal organoids by optimized recombinant adeno-associated virus vectors.
    Wei J; Ran G; Wang X; Jiang N; Liang J; Lin X; Ling C; Zhao B
    J Biol Chem; 2019 Sep; 294(38):14096-14104. PubMed ID: 31366731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized 3D Culture of Hepatic Cells for Liver Organoid Metabolic Assays.
    Gamboa CM; Wang Y; Xu H; Kalemba K; Wondisford FE; Sabaawy HE
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Generation of Organoids for Studying Wnt Signaling.
    Drost J; Artegiani B; Clevers H
    Methods Mol Biol; 2016; 1481():141-59. PubMed ID: 27590160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of liver bipotential organoids with a small-molecule cocktail.
    Wang X; Ni C; Jiang N; Wei J; Liang J; Zhao B; Lin X
    J Mol Cell Biol; 2020 Aug; 12(8):618-629. PubMed ID: 32232340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation and characterization of mature hepatocyte organoids for liver metabolic studies.
    Liu Y; Zhou Y; Ahodantin J; Jin Y; Zhu J; Sun Z; Wu X; Su L; Yang Y
    J Cell Sci; 2024 May; 137(10):. PubMed ID: 38700490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.