These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 33247508)
21. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography. Carlier S; Didday R; Slots T; Kayaert P; Sonck J; El-Mourad M; Preumont N; Schoors D; Van Camp G Cardiovasc Revasc Med; 2014 Jun; 15(4):226-32. PubMed ID: 24746102 [TBL] [Abstract][Full Text] [Related]
22. Automated Detection of Vulnerable Plaque for Intravascular Optical Coherence Tomography Images. Liu R; Zhang Y; Zheng Y; Liu Y; Zhao Y; Yi L Cardiovasc Eng Technol; 2019 Dec; 10(4):590-603. PubMed ID: 31535296 [TBL] [Abstract][Full Text] [Related]
23. A novel hybrid approach for reconstruction of coronary bifurcations using angiography and OCT. Andrikos IO; Sakellarios AI; Siogkas PK; Rigas G; Exarchos TP; Athanasiou LS; Karanasos A; Toutouzas K; Tousoulis D; Michalis LK; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():588-591. PubMed ID: 29059941 [TBL] [Abstract][Full Text] [Related]
24. [Progress of quantitative intravascular optical coherence tomography]. Yang F; Sun Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):358-364. PubMed ID: 32329290 [TBL] [Abstract][Full Text] [Related]
25. First presentation of 3-dimensional reconstruction and centerline-guided assessment of coronary bifurcation by fusion of X-ray angiography and optical coherence tomography. Tu S; Holm NR; Christiansen EH; Reiber JH JACC Cardiovasc Interv; 2012 Aug; 5(8):884-5. PubMed ID: 22917461 [No Abstract] [Full Text] [Related]
26. A method for coronary bifurcation centerline reconstruction from angiographic images based on focalization optimization. Montin E; Migliori S; Chiastra C; Credi C; Fedele R; Aurigemma C; Levi M; Burzotta F; Migliavacca F; Mainardi LT Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4165-4168. PubMed ID: 28269200 [TBL] [Abstract][Full Text] [Related]
27. Three-dimensional registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation. Prabhu D; Mehanna E; Gargesha M; Brandt E; Wen D; van Ditzhuijzen NS; Chamie D; Yamamoto H; Fujino Y; Alian A; Patel J; Costa M; Bezerra HG; Wilson DL J Med Imaging (Bellingham); 2016 Apr; 3(2):026004. PubMed ID: 27429997 [TBL] [Abstract][Full Text] [Related]
28. 3D reconstruction of coronary artery bifurcations from coronary angiography and optical coherence tomography: feasibility, validation, and reproducibility. Wu W; Samant S; de Zwart G; Zhao S; Khan B; Ahmad M; Bologna M; Watanabe Y; Murasato Y; Burzotta F; Brilakis ES; Dangas G; Louvard Y; Stankovic G; Kassab GS; Migliavacca F; Chiastra C; Chatzizisis YS Sci Rep; 2020 Oct; 10(1):18049. PubMed ID: 33093499 [TBL] [Abstract][Full Text] [Related]
29. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Slager CJ; Wentzel JJ; Schuurbiers JC; Oomen JA; Kloet J; Krams R; von Birgelen C; van der Giessen WJ; Serruys PW; de Feyter PJ Circulation; 2000 Aug; 102(5):511-6. PubMed ID: 10920062 [TBL] [Abstract][Full Text] [Related]
30. Relationship between the contrast effects of raw data projection images from three-dimensional digital subtraction angiography and the optimal volume rendering parameters. Takagi S; Tokumitsu H; Sanada S J Digit Imaging; 2015 Jun; 28(3):368-72. PubMed ID: 25447419 [TBL] [Abstract][Full Text] [Related]
31. Current research and future prospects of IVOCT imaging-based detection of the vascular lumen and vulnerable plaque. Zhang R; Fan Y; Qi W; Wang A; Tang X; Gao T J Biophotonics; 2022 May; 15(5):e202100376. PubMed ID: 35139263 [TBL] [Abstract][Full Text] [Related]
32. A Deep Segmentation Network of Multi-Scale Feature Fusion Based on Attention Mechanism for IVOCT Lumen Contour. Huang C; Lan Y; Xu G; Zhai X; Wu J; Lin F; Zeng N; Hong Q; Ng EYK; Peng Y; Chen F; Zhang G IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):62-69. PubMed ID: 32078556 [TBL] [Abstract][Full Text] [Related]
33. In vivo validation of CAAS QCA-3D coronary reconstruction using fusion of angiography and intravascular ultrasound (ANGUS). Schuurbiers JC; Lopez NG; Ligthart J; Gijsen FJ; Dijkstra J; Serruys PW; Van der Steen AF; Wentzel JJ Catheter Cardiovasc Interv; 2009 Apr; 73(5):620-6. PubMed ID: 19309696 [TBL] [Abstract][Full Text] [Related]
34. Anatomically correct three-dimensional coronary artery reconstruction using frequency domain optical coherence tomographic and angiographic data: head-to-head comparison with intravascular ultrasound for endothelial shear stress assessment in humans. Papafaklis MI; Bourantas CV; Yonetsu T; Vergallo R; Kotsia A; Nakatani S; Lakkas LS; Athanasiou LS; Naka KK; Fotiadis DI; Feldman CL; Stone PH; Serruys PW; Jang IK; Michalis LK EuroIntervention; 2015 Aug; 11(4):407-15. PubMed ID: 24974809 [TBL] [Abstract][Full Text] [Related]
35. Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography - comparison and registration using IVUS. Athanasiou LS; Rigas GA; Sakellarios AI; Exarchos TP; Siogkas PK; Michalis LK; Parodi O; Vozzi F; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5638-41. PubMed ID: 26737571 [TBL] [Abstract][Full Text] [Related]
36. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography. Yong YL; Tan LK; McLaughlin RA; Chee KH; Liew YM J Biomed Opt; 2017 Dec; 22(12):1-9. PubMed ID: 29274144 [TBL] [Abstract][Full Text] [Related]
37. High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Schoenberg SO; Rieger J; Weber CH; Michaely HJ; Waggershauser T; Ittrich C; Dietrich O; Reiser MF Radiology; 2005 May; 235(2):687-98. PubMed ID: 15770035 [TBL] [Abstract][Full Text] [Related]
38. Reconstruction of stented coronary arteries from optical coherence tomography images: Feasibility, validation, and repeatability of a segmentation method. Chiastra C; Montin E; Bologna M; Migliori S; Aurigemma C; Burzotta F; Celi S; Dubini G; Migliavacca F; Mainardi L PLoS One; 2017; 12(6):e0177495. PubMed ID: 28574987 [TBL] [Abstract][Full Text] [Related]
39. Diagnosis of Thin-Capped Fibroatheromas in Intravascular Optical Coherence Tomography Images: Effects of Light Scattering. Phipps JE; Hoyt T; Vela D; Wang T; Michalek JE; Buja LM; Jang IK; Milner TE; Feldman MD Circ Cardiovasc Interv; 2016 Jul; 9(7):. PubMed ID: 27406987 [TBL] [Abstract][Full Text] [Related]