These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33247560)
61. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Haenssle HA; Fink C; Toberer F; Winkler J; Stolz W; Deinlein T; Hofmann-Wellenhof R; Lallas A; Emmert S; Buhl T; Zutt M; Blum A; Abassi MS; Thomas L; Tromme I; Tschandl P; Enk A; Rosenberger A; Ann Oncol; 2020 Jan; 31(1):137-143. PubMed ID: 31912788 [TBL] [Abstract][Full Text] [Related]
62. Acral melanoma detection using a convolutional neural network for dermoscopy images. Yu C; Yang S; Kim W; Jung J; Chung KY; Lee SW; Oh B PLoS One; 2018; 13(3):e0193321. PubMed ID: 29513718 [TBL] [Abstract][Full Text] [Related]
63. Melanoma segmentation based on deep learning. Zhang X Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):267-277. PubMed ID: 29043858 [TBL] [Abstract][Full Text] [Related]
64. Assessing the effectiveness of artificial intelligence methods for melanoma: A retrospective review. Cui X; Wei R; Gong L; Qi R; Zhao Z; Chen H; Song K; Abdulrahman AAA; Wang Y; Chen JZS; Chen S; Zhao Y; Gao X J Am Acad Dermatol; 2019 Nov; 81(5):1176-1180. PubMed ID: 31255749 [TBL] [Abstract][Full Text] [Related]
65. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images. Pang S; Yu Z; Orgun MA Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085 [TBL] [Abstract][Full Text] [Related]
66. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Garcia-Arroyo JL; Garcia-Zapirain B Comput Methods Programs Biomed; 2019 Jan; 168():11-19. PubMed ID: 30527129 [TBL] [Abstract][Full Text] [Related]
67. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Fujisawa Y; Otomo Y; Ogata Y; Nakamura Y; Fujita R; Ishitsuka Y; Watanabe R; Okiyama N; Ohara K; Fujimoto M Br J Dermatol; 2019 Feb; 180(2):373-381. PubMed ID: 29953582 [TBL] [Abstract][Full Text] [Related]
68. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection. Pennisi A; Bloisi DD; Nardi D; Giampetruzzi AR; Mondino C; Facchiano A Comput Med Imaging Graph; 2016 Sep; 52():89-103. PubMed ID: 27215953 [TBL] [Abstract][Full Text] [Related]
69. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
70. Automatic lesion border selection in dermoscopy images using morphology and color features. Mishra NK; Kaur R; Kasmi R; Hagerty JR; LeAnder R; Stanley RJ; Moss RH; Stoecker WV Skin Res Technol; 2019 Jul; 25(4):544-552. PubMed ID: 30868667 [TBL] [Abstract][Full Text] [Related]
71. Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database. Cha D; Pae C; Seong SB; Choi JY; Park HJ EBioMedicine; 2019 Jul; 45():606-614. PubMed ID: 31272902 [TBL] [Abstract][Full Text] [Related]
73. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
74. Automatic differentiation of melanoma from dysplastic nevi. Rastgoo M; Garcia R; Morel O; Marzani F Comput Med Imaging Graph; 2015 Jul; 43():44-52. PubMed ID: 25797605 [TBL] [Abstract][Full Text] [Related]
75. Deep Learning-Based Classification for Melanoma Detection Using XceptionNet. Lu X; Firoozeh Abolhasani Zadeh YA J Healthc Eng; 2022; 2022():2196096. PubMed ID: 35360474 [TBL] [Abstract][Full Text] [Related]
76. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Hekler A; Utikal JS; Enk AH; Solass W; Schmitt M; Klode J; Schadendorf D; Sondermann W; Franklin C; Bestvater F; Flaig MJ; Krahl D; von Kalle C; Fröhling S; Brinker TJ Eur J Cancer; 2019 Sep; 118():91-96. PubMed ID: 31325876 [TBL] [Abstract][Full Text] [Related]
77. Real-time supervised detection of pink areas in dermoscopic images of melanoma: importance of color shades, texture and location. Kaur R; Albano PP; Cole JG; Hagerty J; LeAnder RW; Moss RH; Stoecker WV Skin Res Technol; 2015 Nov; 21(4):466-73. PubMed ID: 25809473 [TBL] [Abstract][Full Text] [Related]
78. A Cloud-Based Infrastructure for Feedback-Driven Training and Image Recognition. Abedini M; von Cavallar S; Chakravorty R; Davis M; Garnavi R Stud Health Technol Inform; 2015; 216():691-5. PubMed ID: 26262140 [TBL] [Abstract][Full Text] [Related]
79. Automatic discovery of clinically interpretable imaging biomarkers for Mycobacterium tuberculosis supersusceptibility using deep learning. Tavolara TE; Niazi MKK; Ginese M; Piedra-Mora C; Gatti DM; Beamer G; Gurcan MN EBioMedicine; 2020 Dec; 62():103094. PubMed ID: 33166789 [TBL] [Abstract][Full Text] [Related]