These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33248001)

  • 1. Temporary decrease in tacrolimus clearance in cytochrome P450 3A5 non-expressors early after living donor kidney transplantation: Effect of interleukin 6-induced suppression of the cytochrome P450 3A gene.
    Enokiya T; Nishikawa K; Hamada Y; Ikemura K; Sugimura Y; Okuda M
    Basic Clin Pharmacol Toxicol; 2021 Mar; 128(3):525-533. PubMed ID: 33248001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic review of the effect of CYP3A5 genotype on the apparent oral clearance of tacrolimus in renal transplant recipients.
    Barry A; Levine M
    Ther Drug Monit; 2010 Dec; 32(6):708-14. PubMed ID: 20864901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients.
    Fukudo M; Yano I; Yoshimura A; Masuda S; Uesugi M; Hosohata K; Katsura T; Ogura Y; Oike F; Takada Y; Uemoto S; Inui K
    Pharmacogenet Genomics; 2008 May; 18(5):413-23. PubMed ID: 18408564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative performance of oral midazolam clearance and plasma 4β-hydroxycholesterol to explain interindividual variability in tacrolimus clearance.
    Vanhove T; de Jonge H; de Loor H; Annaert P; Diczfalusy U; Kuypers DR
    Br J Clin Pharmacol; 2016 Dec; 82(6):1539-1549. PubMed ID: 27501475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of donor
    Wheeler C; Masimirembwa C; Mthembu B; Botha J; Scholefield J; Fabian J
    S Afr Med J; 2024 Apr; 114(3b):e1367. PubMed ID: 39041443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Minimal Physiologically-Based Pharmacokinetic Model for Tacrolimus in Living-Donor Liver Transplantation: Perspectives Related to Liver Regeneration and the cytochrome P450 3A5 (CYP3A5) Genotype.
    Itohara K; Yano I; Tsuzuki T; Uesugi M; Nakagawa S; Yonezawa A; Okajima H; Kaido T; Uemoto S; Matsubara K
    CPT Pharmacometrics Syst Pharmacol; 2019 Aug; 8(8):587-595. PubMed ID: 31087501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on the pharmacokinetics of the prolonged-release, once-daily formulation of tacrolimus in stable renal transplant recipients.
    Glowacki F; Lionet A; Hammelin JP; Labalette M; Provôt F; Hazzan M; Broly F; Noël C; Cauffiez C
    Clin Pharmacokinet; 2011 Jul; 50(7):451-9. PubMed ID: 21528942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Which Genetic Determinants Should be Considered for Tacrolimus Dose Optimization in Kidney Transplantation? A Combined Analysis of Genes Affecting the CYP3A Locus.
    Bruckmueller H; Werk AN; Renders L; Feldkamp T; Tepel M; Borst C; Caliebe A; Kunzendorf U; Cascorbi I
    Ther Drug Monit; 2015 Jun; 37(3):288-95. PubMed ID: 25271728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cytochrome P450 (CYP) 3A4*1G polymorphism on the pharmacokinetics of tacrolimus, probability of acute cellular rejection, and mRNA expression level of CYP3A5 rather than CYP3A4 in living-donor liver transplant patients.
    Uesugi M; Hosokawa M; Shinke H; Hashimoto E; Takahashi T; Kawai T; Matsubara K; Ogawa K; Fujimoto Y; Okamoto S; Kaido T; Uemoto S; Masuda S
    Biol Pharm Bull; 2013; 36(11):1814-21. PubMed ID: 24189425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of cytochrome P450 3A5 polymorphism in graft livers on the frequency of acute cellular rejection in living-donor liver transplantation.
    Uesugi M; Kikuchi M; Shinke H; Omura T; Yonezawa A; Matsubara K; Fujimoto Y; Okamoto S; Kaido T; Uemoto S; Masuda S
    Pharmacogenet Genomics; 2014 Jul; 24(7):356-66. PubMed ID: 24911663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Cytochrome P450 3A5 Non-Expressor Kidney Allograft as a Risk Factor for Calcineurin Inhibitor Nephrotoxicity.
    Udomkarnjananun S; Townamchai N; Chariyavilaskul P; Iampenkhae K; Pongpirul K; Sirichindakul B; Panumatrassamee K; Vanichanan J; Avihingsanon Y; Eiam-Ong S; Praditpornsilpa K
    Am J Nephrol; 2018; 47(3):182-190. PubMed ID: 29539600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cytochrome P450 3A5 polymorphisms on viral infection incidence in kidney transplant patients treated with tacrolimus.
    Hattori Y; Tanaka H; Teranishi J; Ishida H; Makiyama K; Miyajima E; Noguchi K; Kubota Y
    Transplant Proc; 2014; 46(2):570-3. PubMed ID: 24656015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis.
    Zuo XC; Ng CM; Barrett JS; Luo AJ; Zhang BK; Deng CH; Xi LY; Cheng K; Ming YZ; Yang GP; Pei Q; Zhu LJ; Yuan H; Liao HQ; Ding JJ; Wu D; Zhou YN; Jing NN; Huang ZJ
    Pharmacogenet Genomics; 2013 May; 23(5):251-61. PubMed ID: 23459029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration of tacrolimus and major metabolites in kidney transplant recipients as a function of diabetes mellitus and cytochrome P450 3A gene polymorphism.
    Chitnis SD; Ogasawara K; Schniedewind B; Gohh RY; Christians U; Akhlaghi F
    Xenobiotica; 2013 Jul; 43(7):641-9. PubMed ID: 23278282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CYP3A5 polymorphisms and their effects on tacrolimus exposure in an ethnically diverse South African renal transplant population.
    Muller WK; Dandara C; Manning K; Mhandire D; Ensor J; Barday Z; Freercks R
    S Afr Med J; 2020 Jan; 110(2):159-166. PubMed ID: 32657689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients.
    Deininger KM; Vu A; Page RL; Ambardekar AV; Lindenfeld J; Aquilante CL
    Clin Transplant; 2016 Sep; 30(9):1074-81. PubMed ID: 27314545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing haematocrit.
    de Jonge H; Vanhove T; de Loor H; Verbeke K; Kuypers DR
    Br J Clin Pharmacol; 2015 Sep; 80(3):548-59. PubMed ID: 26114223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CYP3A5*3 and ABCB1 61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation.
    Hu R; Barratt DT; Coller JK; Sallustio BC; Somogyi AA
    Basic Clin Pharmacol Toxicol; 2018 Sep; 123(3):320-326. PubMed ID: 29603629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients.
    Shi Y; Li Y; Tang J; Zhang J; Zou Y; Cai B; Wang L
    Gene; 2013 Jan; 512(2):226-31. PubMed ID: 23107770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients.
    Elens L; Bouamar R; Hesselink DA; Haufroid V; van der Heiden IP; van Gelder T; van Schaik RH
    Clin Chem; 2011 Nov; 57(11):1574-83. PubMed ID: 21903774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.